相关习题
 0  240136  240144  240150  240154  240160  240162  240166  240172  240174  240180  240186  240190  240192  240196  240202  240204  240210  240214  240216  240220  240222  240226  240228  240230  240231  240232  240234  240235  240236  240238  240240  240244  240246  240250  240252  240256  240262  240264  240270  240274  240276  240280  240286  240292  240294  240300  240304  240306  240312  240316  240322  240330  266669 

科目: 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|\\ 2-lnx\end{array}\right.$$\begin{array}{l}0<x≤e\\ x>e\end{array}$,若正实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围为(  )
A.(e,2e+e2B.$(\frac{1}{e}+2e,2+{e^2})$C.$(\frac{1}{e}+e,2+{e^2})$D.$(\frac{1}{e}+e,2e+{e^2})$

查看答案和解析>>

科目: 来源: 题型:选择题

20.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=(  )
A.15B.11C.8D.7

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=ex-kx,x∈R
(1)若k=e,求函数f(x)的极值;
(2)若对于任意x∈R,f(|x|)>0恒成立,试求实数k的取值范围;
(3)设函数h(x)=f(x)+f(-x),求证:$\frac{lnh(1)+lnh(2)+…+lnh(n)}{n}>\frac{{ln({{e^{n+1}}+2})}}{2}$(n∈N*)

查看答案和解析>>

科目: 来源: 题型:解答题

18.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球形,按照设计要求中间圆柱体部分的容积为16π立方米,且L≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为$\frac{c}{2}(c>0)$千元.设该容器的建造费用为y千元.(圆柱体体积公式为V=πr2l,球的体积公式为$V=\frac{4}{3}π{r^3}$,圆柱侧面积公式为S=2πrl,球的表面积公式为S=4πr2
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$( x∈R)在区间[1,2]上是增函数.
(1)若函数f(x)在区间[1,2]上是增函数,求实数a的值组成的集合A;
(2)设关于x的方程f(x)=$\frac{1}{x}$的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≤|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设曲线C:f(x)=alnx+bx,f'(x)表示f(x)导函数.已知函数f(x)在x=1处有极值-1
(1)求f(x)的解析式.
(2)数列{an}满足a1=1,an+1=2f′($\frac{1}{{a}_{n}}$)+3.求a2,a3,a4,用不完全归纳法猜想{an}的通项公式并用数学归纳法加以证明.
(3)在(2)的基础上用反证法证明:数列{an}中不存在任何不同三项成等差数列.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{x}$
(1)利用定义法求函数f(x)=$\frac{1}{x}$的导函数
(2)求曲线f(x)=$\frac{1}{x}$过(2,0)的切线方程
(3)求(2)的切线与曲线$f(x)=\frac{1}{x}$及直线x=2所围成的曲边图形的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函数f(x)、g(x)的定义域分别为A,B,且A⊆B,若对于任意x∈A,都有g(x)=f(x),则称g(x)函数为f(x)在B上的一个延拓函数.设f(x)=e-x(x-1)(x>0),g(x)为f(x)在R上的一个延拓函数,且g(x)是奇函数.给出以下命题:
①当x<0时,g(x)=e-x(1-x);          
②函数g(x)有3个零点;
③g(x)>0的解集为(-1,0)∪(1,+∞);     
 ④?x1,x2∈R,都有$|g({x_1})-g({x_2})|≤\frac{2}{e^2}$.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

13.若函数f(x)=-x3+3x在(3-a2,2a)上有最大值,则实数α的取值范围是(  )
A.$(\frac{1}{2},\sqrt{2})$B.$(\sqrt{2},\sqrt{5}]$C.$(1,\sqrt{2})$D.$(\sqrt{2},\sqrt{5})$

查看答案和解析>>

科目: 来源: 题型:选择题

12.函数f(x)在定义域R内可导,若任意的x∈R,都有f(x)=f(2-x),且当x≠1时,有(x-1)f'(x)>0,设a=f(lne),b=f(ln2),$c=f(ln\frac{1}{e})$,则a、b、c的大小关系为(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

同步练习册答案