相关习题
 0  240158  240166  240172  240176  240182  240184  240188  240194  240196  240202  240208  240212  240214  240218  240224  240226  240232  240236  240238  240242  240244  240248  240250  240252  240253  240254  240256  240257  240258  240260  240262  240266  240268  240272  240274  240278  240284  240286  240292  240296  240298  240302  240308  240314  240316  240322  240326  240328  240334  240338  240344  240352  266669 

科目: 来源: 题型:解答题

11.在△ABC中,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=3$\overrightarrow{BA}$•$\overrightarrow{BC}$
(1)若cosC=$\frac{\sqrt{5}}{5}$求A的值;
(2)若$A=\frac{π}{3},c=4$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(x)=ax2-(a+2)x+lnx.若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,则a的取值范围为[0,8].

查看答案和解析>>

科目: 来源: 题型:填空题

9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做了10次和 15次试验,并且利用最小二乘法,求得回归方程所对应的直线分别为l1:y=0.7x-0.5和l2:y=0.8x-1,则这两个人在试验中发现对变量x的观测数据的平均值S与对变量y的观测数据的平均值t的和是8.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知各项均不为零的数列{an},定义向量$\overrightarrow{c_n}=({{a_n},{a_{n+1}}}),\overrightarrow{b_n}=({2n+2,-2n}),n∈{N^*}$.下列命题中真命题是(  )
A.若?n∈N*总有cn⊥bn成立,则数列{an}是等比数列
B.若?n∈N*总有cn∥bn成立成立,则数列{an}是等比数列
C.若?n∈N*总有cn⊥bn成立,则数列{an}是等差数列
D.若?n∈N*总有cn∥bn成立,则数列{an}是等差数列

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是($\frac{5}{2}$,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

6.(x-y)(x+2y+z)6的展开式中,xy3z3项的系数为-80.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}-1(x<1)}\\{\frac{lnx}{x}(x≥1)}\end{array}}\right.$关于x的方程2[f(x)]2+(1-2m)f(x)-m=0,有5不同的实数解,则m的取值范围是(  )
A.$(-1,\frac{1}{e})$B.(0,+∞)C.$(0,\frac{1}{e})$D.$(0,\frac{1}{e}]$

查看答案和解析>>

科目: 来源: 题型:填空题

4.关于正整数n 的命题2+3+4+…+n=$\frac{(n-1)(n+2)}{2}$ 是真命题,则用数学归纳法证明时,第一步取n=2.

查看答案和解析>>

科目: 来源: 题型:填空题

3.复平面内,|z+1|=2 表示的图形的面积是4π.

查看答案和解析>>

科目: 来源: 题型:填空题

2.O是△ABC所在平面上的一点.内角A.B.C所对的边分别是3、4、5,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$.若点P在△ABC的边上.则$\overrightarrow{OA}$•$\overrightarrow{OP}$的取值范围为[-5,10].

查看答案和解析>>

同步练习册答案