相关习题
 0  240195  240203  240209  240213  240219  240221  240225  240231  240233  240239  240245  240249  240251  240255  240261  240263  240269  240273  240275  240279  240281  240285  240287  240289  240290  240291  240293  240294  240295  240297  240299  240303  240305  240309  240311  240315  240321  240323  240329  240333  240335  240339  240345  240351  240353  240359  240363  240365  240371  240375  240381  240389  266669 

科目: 来源: 题型:解答题

16.某中学为了解高一年级学生身体发育情况,对全校1400名高一年级学生按性别进行分层抽样检查,测得一组样本的身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 频数2511453
表2:女生身高频数分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 频数28151221
(I)估计该校高一女生的人数:
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在△ABC中,a,b,c分别是A,B,C的对边,且$\frac{tanC}{tanB}=-\frac{c}{2a+c}$.
(I)求B;
(II)若b=2$\sqrt{3}$,a+c=4,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

14.我国齐梁时代的数学家祖暅(公元前5-6世纪,祖冲之之子)提出了一条原理:“幂势既同,则积不容异”,这个原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体,如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S及S两截面,可以证明S=S总成立.据此,短轴长为$2\sqrt{3}$,长轴为5的椭球体的体积是10π.

查看答案和解析>>

科目: 来源: 题型:填空题

13.阅读如图的程序框图,若运行相应的程序,则输出k的值为99.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知曲线C在平面直角坐标系xOy下的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(1)求曲线C的普通方程及极坐标方程;
(2)直线l的极坐标方程是$ρcos(θ-\frac{π}{6})=3\sqrt{3}$,射线OT:$θ=\frac{π}{3}(ρ>0)$与曲线C交于点A与直线l交于点B,求线段AB的长.

查看答案和解析>>

科目: 来源: 题型:选择题

11.阅读下边的程序框图,运行相应的程序,输出的结果为(  )
A.-2B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目: 来源: 题型:填空题

10.设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B两点,且点P恰为AB的中点,则$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左右焦点分别为F1,F2,渐近线为l1,l2,P位于l1在第一象限内的部分,若l2⊥PF1,l2∥PF2,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函数f(x)最小值;
(Ⅱ)关于x的不等式f(x)≤2-|x-1|有解,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.平面直角坐标系xOy中,曲线C1的方程是$\frac{x^2}{4}+\frac{y^2}{12}=1$,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2cosθ-4sinθ.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设C2与x轴的一个交点是P(m,0)(m>0),经过P斜率为1的直线l交C1于A,B两点,根据(Ⅰ)中你得到的参数方程,求|AB|.

查看答案和解析>>

同步练习册答案