相关习题
 0  240209  240217  240223  240227  240233  240235  240239  240245  240247  240253  240259  240263  240265  240269  240275  240277  240283  240287  240289  240293  240295  240299  240301  240303  240304  240305  240307  240308  240309  240311  240313  240317  240319  240323  240325  240329  240335  240337  240343  240347  240349  240353  240359  240365  240367  240373  240377  240379  240385  240389  240395  240403  266669 

科目: 来源: 题型:选择题

16.若复数z1=1+5i,z2=-3+7i,则复数z=z1-z2在复平面内对应的点在(  )
A.第四象限B.第二象限C.第三象限D.第一象限

查看答案和解析>>

科目: 来源: 题型:选择题

15.若如图框图所给的程序运行结果为S=28,那么判断框中应填入的关于k的条件是(  )
A.k≥8B.k>8C.k≥7D.k>9

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知命题p:指数函数y=(1-a)x是R上的增函数,命题q:不等式ax2+2x-1>0有解.若命题p是真命题,命题q是假命题,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知数列{an}满足a1=1,且an+1-an=2n,n∈N*,若$\frac{16λ}{1+{a}_{n}}$+19≤3n对任意n∈N*都成立,则实数λ的取值范围为(-∞,-8].

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且对一切正整数n都有Sn=n2+$\frac{1}{2}$an
(1)求数列{an}的通项公式;
(2)是否存在实数a,使不等式(1-$\frac{1}{{a}_{1}}$)(1-$\frac{1}{{a}_{2}}$)…(1-$\frac{1}{{a}_{n}}$)<$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图,为测得河岸上塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是10$\sqrt{6}$m.

查看答案和解析>>

科目: 来源: 题型:解答题

10.全美职业篮球联赛(NBA)某年度总决赛在克利夫兰骑士队与金州勇士队之间角逐,比赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.因两队实力相当,故每场比赛获胜的可能性相等.据以往资料统计,第一场比赛组织者可获得门票收入2000万美元,以后每场比赛门票收入比上一场增加100万美元.当两队决出胜负后,
问:(1)组织者在此次决赛中要获得门票收入不少于13500万美元的概率为多少?
(2)某队在比赛过程中曾一度比分(胜一场得1分)落后2分以上(含2分),最后取得全场胜利称为“逆袭”,求骑士队“逆袭”获胜的概率;
(3)求此次决赛所需比赛场数的概率分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=$\sqrt{2}$,BB1=3,D为A1C1的中点,F在线段AA1上.
(1)AF为何值时,CF与平面B1DF所成的角为直角?
(2)设AF=1,求平面B1CF与平面ABC所成的 锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.现有4名男生、3名女生站成一排照相.(用数字作答)
(1)两端是女生,有多少种不同的站法?
(2)任意两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

查看答案和解析>>

同步练习册答案