相关习题
 0  240240  240248  240254  240258  240264  240266  240270  240276  240278  240284  240290  240294  240296  240300  240306  240308  240314  240318  240320  240324  240326  240330  240332  240334  240335  240336  240338  240339  240340  240342  240344  240348  240350  240354  240356  240360  240366  240368  240374  240378  240380  240384  240390  240396  240398  240404  240408  240410  240416  240420  240426  240434  266669 

科目: 来源: 题型:填空题

6.点M为正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1上一点,NC1=2NB1,DM⊥BN,若球O的体积为9$\sqrt{2}$π,则动点M的轨迹的长度为$\frac{3\sqrt{30}}{5}π$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知点A(5,0),抛物线C:y2=2px(0<p<5)的准线为l,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{2m}+\frac{{y}^{2}}{m-4}$=1的一条渐近线斜率大于1,则实数m的取值范围(  )
A.(0,4)B.(0,$\frac{4}{3}$)C.(0,2)D.($\frac{4}{3}$,4)

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图(1),五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如图(2),将△EAD沿AD折到△PAD的位置,得到四棱锥P-ABCD.点M为线段PC的中点,且BM⊥平面PCD.

(1)求证:平面PAD⊥平面PCD;
(2)若直线PC与AB所成角的正切值为$\frac{1}{2}$,设AB=1,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.天然气是较为安全的燃气之一,它不含一氧化碳,也比空气轻,一旦泄露,立即会向上扩散,不易积累形成爆炸性气体,安全性较高,其优点有:①绿色环保;②经济实惠;③安全可靠;④改善生活.某市政府为了节约居民天然气,计划在本市试行居民天然气定额管理,即确定一个居民年用气量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用气量的分布情况,现采用抽样调查的方式,获得了n位居民某年的用气量(单位:立方米),样本统计结果如图表.
分组频数频率
[0,10) 25 
 
[10,20)
  0.19
 
[20,30)
 50 
 
[30,40)
  0.23
 
[40,50)
  0.18
 
[50,60)
 5 
(1)分布求出n,a,b的值;
(2)若从样本中年均用气量在[50,60](单位:立方米)的5位居民中任选2人作进一步的调查研究,求年均用气量最多的居民被选中的概率(5位居民的年均用气量均不相等).

查看答案和解析>>

科目: 来源: 题型:选择题

1.从长度分别为1cm,3cm,5cm,7cm,9cm的5条线段中,任意取出3条,3条线段能构成三角形的概率是(  )
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目: 来源: 题型:解答题

20.(1)求函数$f(x)={log_{2x-1}}\sqrt{3x-2}$的定义域;
(2)求函数$y={(\frac{1}{3})^{{x^2}-4x}}\;\;,\;x∈[0,5)$的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知3A${\;}_{8}^{n-1}$=4A${\;}_{9}^{n-2}$,则n=7.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=|2x-1|+|x+1|,g(x)=|x-a|+|x+a|.
(Ⅰ)解不等式f(x)>9;
(Ⅱ)?x1∈R,?x2∈R,使得f(x1)=g(x2),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-3t}\\{y=-2+4t}\end{array}\right.$(t为参数).以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=tanθ.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)若C1与C2交于A,B两点,点P的极坐标为$({2\sqrt{2},-\frac{π}{4}})$,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

同步练习册答案