相关习题
 0  240307  240315  240321  240325  240331  240333  240337  240343  240345  240351  240357  240361  240363  240367  240373  240375  240381  240385  240387  240391  240393  240397  240399  240401  240402  240403  240405  240406  240407  240409  240411  240415  240417  240421  240423  240427  240433  240435  240441  240445  240447  240451  240457  240463  240465  240471  240475  240477  240483  240487  240493  240501  266669 

科目: 来源: 题型:选择题

5.在等差数列{an}中,已知a2与a4是方程x2-6x+8=0的两个根,若a4>a2,则a2017+a1=(  )
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,焦距是实轴长的$\sqrt{2}$倍且过点(4,-$\sqrt{10}$)
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上;
(3)在(2)条件下,若M F2交双曲线另一点N,求△F1MN的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数$f(x)=a(2{cos^2}\frac{x}{2}+sinx)+b$(a>0)
(1)求f(x)的单调增区间;
(2)当x∈[0,π]时,f(x)值域为[3,4],求a,b的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.原命题是“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d”,则它的逆否命题是“已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d”..

查看答案和解析>>

科目: 来源: 题型:选择题

1.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的图象关于直线x=$\frac{2π}{3}$对称,它的周期是π,则以下命题错误的是(  )
A.f(x)的图象过点$(0,\frac{1}{2})$B.f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是减函数
C.f(x)的一个对称中心是点$({\frac{5π}{12},0})$D.f(x)的最大值为A

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知a∈R,函数$f(x)=\frac{{{e^x}-a}}{x}-alnx$(e=2.71828…是自然对数的底数).
(Ⅰ)函数f(x)是否存在极大值,若存在,求极大值点,若不存在,说明理由;
(Ⅱ)设$g(x)=\frac{e^x}{1+xlnx}$,证明:对任意x>0,g(x)>1.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知数列{an}和{bn}满足a1a2a3…an=2${\;}^{{b}_{n}}$(n∈N*).若{an}是各项为正数的等比数列,且a1=2,b3=b2+3.
(Ⅰ)求an与bn
(Ⅱ)设cn=$\frac{1}{a_n}-\frac{1}{b_n}$,求数列{cn}的前n项和为Sn

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直,△ABC为等边三角形,M为△ABC内部一点,点P在OM的延长线上,且PA=PB.
(Ⅰ)证明:OA=OB;
(Ⅱ)证明:平面PAB⊥平面POC.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖一次.抽奖方法是:从装有标号为1,2,3,4的4个红球和标号为1,2的2个白球的箱中,随机摸出2个球,若摸出的两球号码相同,可获一等奖;若两球颜色不同且号码相邻,可获二等奖,其余情况获三等奖.已知某顾客参与抽奖一次.
(Ⅰ)求该顾客获一等奖的概率;
(Ⅱ)求该顾客获三获奖的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$为奇函数,且$f({\frac{π}{2}})=0$,其中a∈R,θ∈(0,π).
(Ⅰ)求a,θ的值;
(Ⅱ)若$α∈({\frac{π}{2},π})$,$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,求cosα-sinα的值.

查看答案和解析>>

同步练习册答案