相关习题
 0  23945  23953  23959  23963  23969  23971  23975  23981  23983  23989  23995  23999  24001  24005  24011  24013  24019  24023  24025  24029  24031  24035  24037  24039  24040  24041  24043  24044  24045  24047  24049  24053  24055  24059  24061  24065  24071  24073  24079  24083  24085  24089  24095  24101  24103  24109  24113  24115  24121  24125  24131  24139  266669 

科目: 来源:河北省模拟题 题型:解答题

已知椭圆C:的短轴长等于焦距,椭圆C上的点到右焦点F的最短距离为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点E(2,0)且斜率为k(k>0)的直线l与C交于M、N两点,P是点M关于x轴的对称点,证明:N、F、P三点共线。

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:

(1)求C1,C2的标准方程;
(2)设直线l与椭圆C1交于不同两点M,N,且,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源:安徽省模拟题 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切,
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

已知椭圆C :的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1·k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程,并说明轨迹是什么曲线。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

已知椭圆C :的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1·k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程。

查看答案和解析>>

科目: 来源:浙江省模拟题 题型:解答题

已知椭圆E:,设该椭圆上的点到左焦点F(-c,0)的最大距离为d1,到右顶点A(a,0)的最大距离为d2
(Ⅰ)若d1=3 ,d2=4 ,求椭圆E的方程;
(Ⅱ)设该椭圆上的点到上顶点B(0 ,b)的最大距离为d3,求证:

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

已知椭圆的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F,
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:解答题

已知椭圆经过点,它的焦距|F1F2|=2,E是椭圆上一点且∠F1EF2=60°,
(1)求该椭圆的标准方程; 
(2)求△F1EF2的面积。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:填空题

如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在y轴上,且a-c=,那么椭圆的方程是(    )。

查看答案和解析>>

科目: 来源:陕西省模拟题 题型:填空题

如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在y轴上,且a-c=,那么椭圆的方程是(    )。

查看答案和解析>>

同步练习册答案