相关习题
 0  240330  240338  240344  240348  240354  240356  240360  240366  240368  240374  240380  240384  240386  240390  240396  240398  240404  240408  240410  240414  240416  240420  240422  240424  240425  240426  240428  240429  240430  240432  240434  240438  240440  240444  240446  240450  240456  240458  240464  240468  240470  240474  240480  240486  240488  240494  240498  240500  240506  240510  240516  240524  266669 

科目: 来源: 题型:解答题

17.已知数列{an}中,a1=5,a2=11,且{an-2}是等比数列.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知实数x,y满足$\left\{\begin{array}{l}x-4y+10≥0\\ 2x+y-2≥0\\ 3x-y-3≤0\end{array}\right.$,则$z=\frac{2}{{{x^2}+{y^2}+4x-2y+5}}$的取值范围为[$\frac{1}{10}$,$\frac{2}{5}$].

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距为2c,直线l:y=kx-kc,若当$k=\sqrt{3}$时,直线l与双曲线的左右两支各有一个交点;且当$k=\sqrt{15}$时,直线l与双曲线的右支有两个不同的交点,则双曲线离心率的取值范围为(2,4).

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知θ为锐角,且$sin({θ-\frac{π}{4}})=\frac{{\sqrt{2}}}{10}$,则sin2θ=$\frac{24}{25}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知定义在(0,+∞)上的函数f(x)的导函数为f'(x),且f'(x)(xlnx2)>2f(x),则(  )
A.6f(e)>2f(e3)>3f(e2B.6f(e)<3f(e2)<2f(e3C.6f(e)>3f(e2)>2f(e3D.6f(e)<2f(e3)<3f(e2

查看答案和解析>>

科目: 来源: 题型:选择题

12.将函数$y=sin({2x-\frac{π}{6}})$的图象向右平移$\frac{π}{4}$个单位,所得函数图象的一条对称轴方程为(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左顶点为(-2,0),且椭圆C与直线$y=\frac{{\sqrt{6}}}{2}x+3$相切,
(1)求椭圆C的标准方程;
(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得$\overrightarrow{OA}•\overrightarrow{OB}+λ\overrightarrow{PA}•\overrightarrow{PB}=-7$?请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

10.设a,b是两个实数,以下能推出:“a,b中至少有一个大于1”的条件是(  )
A.a+b>1B.a+b=2C.a2+b2>2D.a+b>2

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知数列{cn}的前n项和为Sn,满足2Sn=n(cn+2).
(1)求c1的值,并证明数列{cn}是等差数列;
(2)若${a_n}=\frac{c_n}{2^n}$,且数列{an}的最大项为$\frac{5}{4}$.
①求数列{an}的通项公式;
②若存在正整数x,使am,an,xak成等差数列(m<n<k,m,n,k∈N*),则当T(x)=am+an+xak取得最大值时,求x的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=$\frac{1+2lnx}{x^2}$,且方程f(x)-m=0有两个相异实数根x1,x2(x1>x2).
(1)求函数f(x)的单调递增区间;
(2)求实数m的取值范围;
(3)证明:x12x2+x1x22>2.

查看答案和解析>>

同步练习册答案