相关习题
 0  240345  240353  240359  240363  240369  240371  240375  240381  240383  240389  240395  240399  240401  240405  240411  240413  240419  240423  240425  240429  240431  240435  240437  240439  240440  240441  240443  240444  240445  240447  240449  240453  240455  240459  240461  240465  240471  240473  240479  240483  240485  240489  240495  240501  240503  240509  240513  240515  240521  240525  240531  240539  266669 

科目: 来源: 题型:选择题

14.已知定义域为R的奇函数y=f(x)的导函数为y=f'(x),当x≠0时,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f({\frac{1}{2}}),b=-2f({-2}),c=-ln2f({ln\frac{1}{2}})$,则a,b,c的大小关系正确的是(  )
A.b<c<aB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数f′(x),的图象如图所示,
 x-10245
f(x)141.541
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,4];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是4,那么t的最大值为4;
④当1<a<4时,函数y=f(x)-a最多有4个零点.
其中正确的命题个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an}的前n项和Sn满足:Sn=2an-2n(n∈N*).
(1)求证:数列{an+2}是等比数列,并求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:Tn≥$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设数列{xn}满足xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求证:{xn+1}是等比数列,并求出数列{xn}的通项公式;
(2)对任意的正整数n,当m∈[-1,1]时,不等式$3{t^2}-6mt+\frac{1}{2}>\frac{1}{x_n}$恒成立,求实数t的取值范围;
(3)求证:$\frac{1}{x_1}+\frac{1}{x_2}+…+\frac{1}{x_n}<\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知直线m,n和平面α,β,则下列四个命题中正确的是(  )
A.若α⊥β,m?β,则m⊥αB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥m,则n∥αD.若m∥α,m∥β,则α∥β

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的图象上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求证:{xn+1}是等比数列,并求出数列{xn}的通项公式;
(2)对任意的正整数n,当m∈[-1,1]时,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求实数t的取值范围;
(3)设四边形PnQnQn+1Pn+1的表面积是Sn,求证:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在△ABC中,内角A、B、C所对的边分别是a、b、c,不等式${x^2}cosC+2xsinC+\frac{3}{2}≥0$对一切实数x恒成立.
(1)求cosC的取值范围;
(2)当∠C取最大值,且△ABC的周长为9时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.

查看答案和解析>>

科目: 来源: 题型:填空题

7.设正数a,b满足a+2b=2,则$\frac{2}{a}+\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目: 来源: 题型:填空题

6.如图,双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点F1(-c,0),F2(c,0),A为双曲线C右支上一点,且OA=c,AF1与y轴交于点B,若F2B是∠AF2F1的角平分线,则双曲线C的离心率是1+$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.设y=f(x)为定义在[-1,1]上的函数,且满足条件:①f(-1)=f(1)=0,②对任意u、v∈[-1,1],恒有|f(u)-f(v)|≤|u-v|,则以下结论正确的为(  )
A.存在u,v∈[-1,1],使|f(u)-f(v)|>1B.存在x0∈[-1,1],使f(x0)>1-x0
C.存在x0∈[-1,1],使f(x0)<x0-1D.对任意x∈[-1,1],有f(x)≤1-x

查看答案和解析>>

同步练习册答案