相关习题
 0  240346  240354  240360  240364  240370  240372  240376  240382  240384  240390  240396  240400  240402  240406  240412  240414  240420  240424  240426  240430  240432  240436  240438  240440  240441  240442  240444  240445  240446  240448  240450  240454  240456  240460  240462  240466  240472  240474  240480  240484  240486  240490  240496  240502  240504  240510  240514  240516  240522  240526  240532  240540  266669 

科目: 来源: 题型:选择题

4.已知命题:①“任意能被2整除的整数都是偶数”的否定是“任意能被2整除的整数不都是偶数”②“菱形的两条对角线互相垂直”的逆命题;③“若a>b,a,b∈R,则a+c>b+c”的逆否命题;④“若a+b≠3,则a≠1或b≠2”的否命题;⑤若“p或q”为假命题,则“非p且非q”是真命题.上述命题中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1,ABCD 为梯形,其中AD∥BC,AB⊥BC,EF 为梯形中位线,将四边形ADFE 沿EF 折起到四边形A'D'FE 的位置,连接A'B,A'C,如图2.设点G 为线段A'B 上不同于A',B 的任意一点.
(Ⅰ)求证:EF∥平面A'BC;
(Ⅱ)若点G 为线段A'B 的中点,求证:A'B⊥平面GEF;
(Ⅲ)作出平面GEF 与平面A'BC的交线,并说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

2.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知$\overrightarrow a=(2,1),\overrightarrow b=(-3,-4),\overrightarrow c⊥(\overrightarrow a-\overrightarrow b)$
(1)求$(2\overrightarrow a+3\overrightarrow b)•(\overrightarrow a-2\overrightarrow b)$;
(2)若向量$\overrightarrow c$为单位向量,求向量$\overrightarrow c$的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知复数z1=1-i,z1•z2+$\overline{{z}_{1}}$=2+2i,求复数z2

查看答案和解析>>

科目: 来源: 题型:填空题

19.命题“存在x0∈(0,$\frac{π}{2}$),tan x0>sin x0”的否定是?x∈(0,$\frac{π}{2}$),tanx≤sinx.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$则关于x的不等式f(f(x))≤3的解集为(-∞,2].

查看答案和解析>>

科目: 来源: 题型:填空题

17.曲线y=x(3lnx+1)在点(1,1)处的切线的斜率为4.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{4,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是(  )
A.(-2,1)B.(1,2)C.[-2,1]D.(1,2]

查看答案和解析>>

科目: 来源: 题型:填空题

15.有下列命题:
①复数z满足|z-1|+|z+1|=2则复数z所对应点Z的轨迹是一个椭圆;
②f′(x0)=$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0})}}{h}=\lim_{x→{x_0}}\frac{{f(x)-f({x_0})}}{{x-{x_0}}}$=$\lim_{h→0}\frac{{f({x_0})-f({x_0}-h)}}{h}$;
③将5封信投入3个邮筒,不同的投法共有53种;
④已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是4和3;
⑤若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为9
其中正确的有:②④⑤.

查看答案和解析>>

同步练习册答案