相关习题
 0  240348  240356  240362  240366  240372  240374  240378  240384  240386  240392  240398  240402  240404  240408  240414  240416  240422  240426  240428  240432  240434  240438  240440  240442  240443  240444  240446  240447  240448  240450  240452  240456  240458  240462  240464  240468  240474  240476  240482  240486  240488  240492  240498  240504  240506  240512  240516  240518  240524  240528  240534  240542  266669 

科目: 来源: 题型:解答题

4.已知数列{an}是公差为d的等差数列,在{an}的每相邻两项之间插入这两项的算术平均值,得到新数列{an(1)},这样的操作叫做该数列的1次“A”扩展,连续m次“A”扩展,得到新数列{an(m)}.例如:数列1,2,3第1次“A”扩展后得到数列1,$\frac{3}{2}$,2,$\frac{5}{2}$,3;第2次“A”扩展后得到数列1,$\frac{5}{4}$,$\frac{3}{2}$,$\frac{7}{4}$,2,$\frac{9}{4}$,$\frac{5}{2}$,$\frac{11}{4}$,3.
(1)求证:{an(m)}为等差数列,并求其公差dm
(2)已知等差数列{an}共有n项,且a1=1,d=1,{an(m)}的所有项的和为Sn(m),求使Sn(n2)-n2>2017,成立的n的取值集合.

查看答案和解析>>

科目: 来源: 题型:解答题

3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
月份i789101112
销售单价xi(元)99.51010.5118
销售量yi(件)111086514
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在实数s,t,其中s<t,使得f(s)=f(t),则t-s的取值范围是(  )
A.[3-2ln2,2)B.[3-2ln2,e-1]C.[e-1,2]D.[0,e+1)

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知A(x1,y1),B(x2,y2)是抛物线C:x2=2py(p>0)上不同两点.
(1)设直线l:y=$\frac{p}{4}$与y轴交于点M,若A,B两点所在的直线方程为y=x-1,且直线l:y=$\frac{p}{4}$恰好平分∠AFB,求抛物线C的标准方程.
(2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直线AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在四棱锥E-ABCD中,平面ABE⊥底面ABCD,侧面AEB为等腰直角三角形,∠AEB=$\frac{π}{2}$,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2CD=2BC
(1)求直线EC与平面ABE所成角的正弦值;
(2)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为9.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知A是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点,F1,F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,则双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知奇函数y=f(x),x∈R,a=${∫}_{-2}^{2}$[f(x)+$\frac{3}{8}$x2]dx,则二项式($\frac{x}{2}$-$\frac{a}{{x}^{2}}$)9的展开式的常数项为(  )
A.-$\frac{21}{2}$B.-$\frac{5}{4}$C.-1D.-$\frac{15}{8}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.在如图所示的矩形中随机投掷30000个点,则落在曲线C下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为(  )
A.4985B.8185C.9970D.24555

查看答案和解析>>

科目: 来源: 题型:填空题

15.当x≥3时,不等式$x+\frac{1}{x-1}≥a$恒成立,则实数a的取值范围$({-∞,\frac{7}{2}}]$.

查看答案和解析>>

同步练习册答案