相关习题
 0  240349  240357  240363  240367  240373  240375  240379  240385  240387  240393  240399  240403  240405  240409  240415  240417  240423  240427  240429  240433  240435  240439  240441  240443  240444  240445  240447  240448  240449  240451  240453  240457  240459  240463  240465  240469  240475  240477  240483  240487  240489  240493  240499  240505  240507  240513  240517  240519  240525  240529  240535  240543  266669 

科目: 来源: 题型:选择题

14.若复数z=1+2i,则复数z的模等于(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.各项为正的数列{an}满足${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{{a_n}^2}}{λ}+{a_n}(n∈{N^*})$,
(1)当λ=an+1时,求证:数列{an}是等比数列,并求其公比;
(2)当λ=2时,令${b_n}=\frac{1}{{{a_n}+2}}$,记数列{bn}的前n项和为Sn,数列{bn}的前n项之积为Tn
求证:对任意正整数n,2n+1Tn+Sn为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an},{bn}满足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(i)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{$\frac{{a}_{n}}{n}$}中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=lnx-ax,g(x)=$\frac{1}{x}$+a.
(1)当a=2 时,求F(x)=f(x)-g(x)在(0,2]的最大值;
(2)讨论函数F(x)=f(x)-g(x) 的单调性;
(3)若f(x)•g(x)≤0 在定义域内恒成立,求实数a的取值集合.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图直三棱柱ABC-A1B1C1 中AC=2AA1,AC⊥BC,D、E 分别为A1C1、AB 的中点.求证:
(1)AD⊥平面BCD
(2)A1E∥平面BCD.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数$f(x)=mx-alnx-m\;,\;\;g(x)=\frac{x}{{{e^{x-1}}}}$,其中m,a均为实数,e为自然对数的底数.
(I)求函数g(x)的极值;
(II)设m=1,a<0,若对任意的x1,x2∈[3,4](x1≠x2),$|{f({x_2})-f({x_1})}|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$恒成立,求实数a的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

8.定义在(0,+∞)上函数f(x)满足:①当x∈[1,3)时,f(x)=1-|x-2|;②f(3x)=3f(x).设关于x的函数F(x)=f(x)-a的零点从小到大依次为x1,x2,…,xn….若a∈(1,3),则x1+x2+…+x2n=6(3n-1).

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-λ.且数列{bn}是单调递增数列,则实数λ的取值范围为(  )
A.λ>2B.λ<2C.λ>3D.λ<3

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数y=f(x)在[0,+∞)上是递减函数,则f($\frac{3}{4}$)≥f(a2-a+1)(填“≥”“≤”“>”“<”).

查看答案和解析>>

科目: 来源: 题型:填空题

5.函数f(x)与g(x)的定义域为[m,n],它们的图象如图所示,则不等式f(x)g(x)<0的解集是{x|x∈(m,a)∪(a,b)∪(c,d)}.

查看答案和解析>>

同步练习册答案