相关习题
 0  240374  240382  240388  240392  240398  240400  240404  240410  240412  240418  240424  240428  240430  240434  240440  240442  240448  240452  240454  240458  240460  240464  240466  240468  240469  240470  240472  240473  240474  240476  240478  240482  240484  240488  240490  240494  240500  240502  240508  240512  240514  240518  240524  240530  240532  240538  240542  240544  240550  240554  240560  240568  266669 

科目: 来源: 题型:选择题

8.设集合A={x|-2<x<3,x∈Z},B={-2,-1,0,1,2,3},则集合A∩B为(  )
A.{-2,-1,0,1,2}B.{-1,0,1,2}C.{-1,0,1,2,3}D.{-2,-1,0,1,2,3}

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数$f(x)=2cos({ωx+φ})-1({ω>0,|φ|<\frac{π}{8}})$,其图象与直线y=1相邻两个交点的距离为$\frac{4}{3}π$,若f(x)>0对$x∈({-\frac{π}{8},\frac{π}{4}})$恒成立,则φ的取值范围是(  )
A.$[{-\frac{π}{12},0}]$B.$({-\frac{π}{8},-\frac{π}{24}}]$C.$[-\frac{π}{12},\frac{π}{8})$D.$[{0,\frac{π}{12}}]$

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF的中点.
(I)求证:BE∥平面ACF;
(II)求平面BCF与平面BEF所成锐二面角的余弦角.

查看答案和解析>>

科目: 来源: 题型:选择题

5.若不等式组$\left\{\begin{array}{l}x≥0\\ y≥2x\\ kx-y+1≥0\end{array}\right.$表示的平面区域是一个直角三角形,则该直角三角形的面积是(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{5}$或$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知i是虚数单位,复数$\frac{5i}{1-2i}$的虚部为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目: 来源: 题型:解答题

3.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.
(Ⅰ)天气预报说,在今后的三天中,每一天降雨的概率均为40%,该营销部门通过设计模拟实验的方法研究三天中恰有两天降雨的概率,利用计算机产生0到9之间取整数值的随机数,并用1,2,3,4,表示下雨,其余6个数字表示不下雨,产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
求由随机模拟的方法得到的概率值;
(Ⅱ)经过数据分析,一天内降雨量的大小x(单位:毫米)与其出售的快餐份数y成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:
降雨量(毫米)12345
快餐数(份)5085115140160
试建立y关于x的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)
附注:回归方程$\widehaty=\widehatbx+\widehata$中斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}}-\overline x{)^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在如图所示的多面体ABCDEF中,ABCD为直角梯形,AB∥CD,∠DAB=90°,四边形ADEF为等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.
(Ⅰ)求证:CD⊥平面ADEF;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知数列{an}满足${a_1}+2{a_2}+…+n{a_n}=(n-1){2^{n+1}}+2$,n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+1}}}}$,Tn=b1+b2+…+bn,求证:对任意的n∈N*,Tn<1.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a,b,c,其面积$S=\sqrt{p(p-a)(p-b)(p-c)}$,这里$p=\frac{1}{2}(a+b+c)$.已知在△ABC中,BC=6,AB=2AC,则△ABC面积的最大值为12.

查看答案和解析>>

科目: 来源: 题型:填空题

19.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一点M关于渐进线的对称点恰为右焦点F2,则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案