相关习题
 0  240438  240446  240452  240456  240462  240464  240468  240474  240476  240482  240488  240492  240494  240498  240504  240506  240512  240516  240518  240522  240524  240528  240530  240532  240533  240534  240536  240537  240538  240540  240542  240546  240548  240552  240554  240558  240564  240566  240572  240576  240578  240582  240588  240594  240596  240602  240606  240608  240614  240618  240624  240632  266669 

科目: 来源: 题型:解答题

9.已知tana=3,求下列各式的值:
(1)$\frac{4sina-2cosa}{5cosa+3sina}$
(2)(sina+2cosa)2

查看答案和解析>>

科目: 来源: 题型:填空题

8.16.如图所示,在正方形ABCD中,已知|$\overrightarrow{AB}$|=2,若N为正方形内(含边界)任意一点,则$\overrightarrow{AB}$•$\overrightarrow{AN}$的最大值是4.

查看答案和解析>>

科目: 来源: 题型:选择题

7.下列对于函数f(x)=3+cos2x,x∈(0,3π)的判断正确的是(  )
A.函数f(x)的周期为π
B.对于?a∈R,函数f(x+a)都不可能为偶函数
C.?x0∈(0,3π),使f(x0)>4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知数列{an}满足${a_1},\frac{a_2}{a_1},\frac{a_3}{a_2},…\frac{a_n}{{{a_{n-1}}}}$是首项为1,公比为2的等比数列,则a101=(  )
A.2100B.24950C.25050D.25151

查看答案和解析>>

科目: 来源: 题型:选择题

5.等差数列{an}的前n项和为Sn,S7<S9<S8,给出下列命题:
①数列{an}为递减数列;②|a8|>|a9|;③Sn最大值为S8;④满足Sn>0的n最大值为16.
其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

4.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
是否
优良
班级
优良
(人数)
非优良
(人数)
合计
合计
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
P(K2≥k)0.100.050.010
k2.7063.8416.635
(以下临界值及公式仅供参考${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:填空题

3.设x1,x2是函数f(x)=(a-1)x3+bx2-2x+1(a≥2,b>0)的两个极值点,且$|{x_1}|+|{x_2}|=2\sqrt{2}$,则实数b的取值范围是[2$\sqrt{3}$,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象的一个最高点坐标为(1,2),相邻的对称轴与对称中心间的距离为2,则下列结论正确的是(  )
A.f(x)的图象关于(2,0)中心对称B.f(x)的图象关于直线x=3对称
C.f(x)在区间(2,3)上单调递增D.f(2017)=2

查看答案和解析>>

科目: 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+b2+4$\sqrt{2}$=c2,ab=4,则$\frac{sinC}{ta{n}^{2}A•sin2B}$的最小值是$\frac{3\sqrt{2}}{2}$+2.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在平面直角坐标系中,动点M(x,y)满足条件$\left\{\begin{array}{l}x-y+2≤0\\ x+y-2≤0\\ y-1≥0\end{array}\right.$,动点Q在曲线${(x-1)^2}+{y^2}=\frac{1}{2}$上,则|MQ|的最小值为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案