相关习题
 0  240475  240483  240489  240493  240499  240501  240505  240511  240513  240519  240525  240529  240531  240535  240541  240543  240549  240553  240555  240559  240561  240565  240567  240569  240570  240571  240573  240574  240575  240577  240579  240583  240585  240589  240591  240595  240601  240603  240609  240613  240615  240619  240625  240631  240633  240639  240643  240645  240651  240655  240661  240669  266669 

科目: 来源: 题型:选择题

8.抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点(0,1),且离心率为$\frac{{\sqrt{3}}}{2}$
(Ⅰ)求椭圆C 的方程;
(Ⅱ)直线l1,l2 都过点H(0,m)(m≠0),分别与x 轴相交于D,E,其中D 为OE 的中点(O 为坐标原点).直线l1 与圆x2+y2=$\frac{1}{2}$ 相切,直线l2 与椭圆C 相交于M,N,
求证:△OMN 的面积为定值;
(Ⅲ)在(Ⅱ)的条件下,设P 为M,N 中点,Q 是椭圆上的点,$\overrightarrow{OP}=λ\overrightarrow{OQ}$ (λ>0 ),求λ 的值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.“λ<1”是“数列an=n2-2λn为递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知数列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*).设bn=$\frac{1}{{a}_{n}-1}$(n∈N*),求证:数列{bn}是等差数列.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知向量$\vec m=({1,cosθ}),\vec n=({sinθ,-2})$,且$\vec m⊥\vec n$,则sin2θ+6cos2θ的值为2.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=lnx,g(x)=f(x)+mx2-(2m+1)x.
(Ⅰ)当m=1时,求曲线y=g(x)在x=2处的切线方程;
(Ⅱ)当m>0时,讨论函数g(x)的单调性;
(Ⅲ)设斜率为k的直线与函数f(x)的图象交于P(x1,y1),Q(x2,y2)两点,其中x1<x2,求证:$\frac{1}{x_2}<k<\frac{1}{x_1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,A,B分别是椭圆C的左、右顶点,$\overrightarrow{A{F_2}}=(5+2\sqrt{6})\overrightarrow{{F_2}B}$,且OF2(其中O为坐标原点)的中点坐标为$(\frac{{\sqrt{30}}}{6},0)$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于P,Q两点,已知点$M(-\frac{7}{3},0)$,求证:$\overrightarrow{MP}•\overrightarrow{MQ}$是定值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在△ABC中,三个内角A,B,C成等差数列,则cos(A+C)的值为-$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知p是r的充分条件,而r是q的必要条件,同时又是s的充分条件,q是s的必要条件,试判断:
(1)s是p的什么条件?
(2)p是q的什么条件?

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知公差不为零的等差数列{an}满足:a1=3,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{1}{{{a}_{n-1}}_{{a}_{n}}}$,求数列{bn}的前n项和{Tn}.

查看答案和解析>>

同步练习册答案