相关习题
 0  23961  23969  23975  23979  23985  23987  23991  23997  23999  24005  24011  24015  24017  24021  24027  24029  24035  24039  24041  24045  24047  24051  24053  24055  24056  24057  24059  24060  24061  24063  24065  24069  24071  24075  24077  24081  24087  24089  24095  24099  24101  24105  24111  24117  24119  24125  24129  24131  24137  24141  24147  24155  266669 

科目: 来源:云南省模拟题 题型:填空题

中心在原点,准线方程为x=±4,离心率等于的椭圆方程是(    )。

查看答案和解析>>

科目: 来源:0105 模拟题 题型:解答题

椭圆C的中心为坐标原点,焦点在y轴上,焦点到相应准线的距离及离心率均为,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B。
(1)求椭圆方程;
(2)若,求m的取值范围。

查看答案和解析>>

科目: 来源:0125 模拟题 题型:解答题

已知椭圆的左、右焦点分别为F1、F2,离心率,右准线方程为x=2,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点F1的直线l与该椭圆交于M、N两点,且,求直线l的方程。

查看答案和解析>>

科目: 来源:广东省高考真题 题型:解答题

设b>0,椭圆方程为,抛物线方程为x2=8(y-b),如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目: 来源:福建省高考真题 题型:解答题

如图,椭圆(a>b>0)的一个焦点是F(1,0),O为坐标原点。
(1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(2)设过点F的直线l交椭圆于A、B两点。若直线l绕点F任意转动,恒有|OA|2+|OB|2<|AB|2,求a的取值范围。

查看答案和解析>>

科目: 来源:福建省高考真题 题型:解答题

如图,椭圆C:(a>b>0)的一个焦点为F(1,0),且过点(2,0)。
(1)求椭圆C的方程;
(2)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M。
(i)求证:点M恒在椭圆C上;
(ii)求△AMN面积的最大值。

查看答案和解析>>

科目: 来源:0116 模拟题 题型:解答题

设F1、F2分别是椭圆C:(a>b>0)的左右焦点。
(1)设椭圆C上点到两点F1、F2距离和等于4,写出椭圆C的方程和焦点坐标;
(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程;
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,kPN,试探究kPM·kPN的值是否与点P及直线L有关,不必证明你的结论。

查看答案和解析>>

科目: 来源:四川省高考真题 题型:解答题

已知椭圆C1的中心和抛物线C2的顶点都在坐标原点O,C1和C2有公共焦点F,点F在x轴正半轴上,且C1的长轴长、短轴长及点F到C1右准线的距离成等比数列。
(Ⅰ)当C2的准线与C1右准线间的距离为15时,求C1及C2的方程;
(Ⅱ)设过点F且斜率为1的直线l交C1于P,Q两点,交C2于M,N两点。当时,求|MN|的值。

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为-1,离心率e=
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点(1,0)作直线交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案