相关习题
 0  23965  23973  23979  23983  23989  23991  23995  24001  24003  24009  24015  24019  24021  24025  24031  24033  24039  24043  24045  24049  24051  24055  24057  24059  24060  24061  24063  24064  24065  24067  24069  24073  24075  24079  24081  24085  24091  24093  24099  24103  24105  24109  24115  24121  24123  24129  24133  24135  24141  24145  24151  24159  266669 

科目: 来源:广东省模拟题 题型:解答题

如图,F是椭圆的右焦点,以F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆的动点,P到两焦点距离之和等于4。
(Ⅰ)求椭圆和圆的标准方程;
(Ⅱ)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

科目: 来源:0117 模拟题 题型:解答题

已知椭圆C1的一条准线方程是,其左、右顶点分别是A、B;双曲线C2的一条渐近线方程为3x-5y=0。
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连结AP 交椭圆C1于点M,连结PB并延长交椭圆C1于点N, 若,求的值。

查看答案和解析>>

科目: 来源:0119 模拟题 题型:解答题

已知点P为圆x2+y2=4上的动点,且P不在x轴上,PD⊥x轴,垂足为D,线段PD中点Q的轨迹为曲线C,过定点M(t,0)(0<t<2)任作一条与y轴不垂直的直线l,它与曲线C交于A、B两点。
(1)求曲线C的方程;
(2)试证明:在x轴上存在定点N,使得∠ANB总能被x轴平分。

查看答案和解析>>

科目: 来源:广东省模拟题 题型:解答题

已知离心率为的椭圆C1的顶点,A1、A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1、A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1·k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值。

查看答案和解析>>

科目: 来源:广东省模拟题 题型:解答题

在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3。
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知点G(1,0)和G′(-1,0),点P在轨迹M上运动,现以P为圆心,PG为半径作圆P,试探究是否存在一个以点G′(-1,0)为圆心的定圆,总与圆P内切?若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:同步题 题型:解答题

在平面直角坐标系中,N为圆A:(x+1)2+y2=16上的一点,点B(1,0),点M是BN中点,点P在线段AN上,且
(1)求动点P的轨迹方程;
(2)试判断以PB为直径的圆与圆x2+y2=4的位置关系,并说明理由.

查看答案和解析>>

科目: 来源:广东省模拟题 题型:填空题

已知椭圆C的离心率e=,且它的焦点与双曲线x2-2y2=4的焦点重合,则椭圆C的方程为(    )。

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

已知椭圆C:(a>b>0)的离心率e=,点F为椭圆的右焦点,点A,B分别为椭圆长轴的左、右顶点,点M为椭圆的上顶点,且满足-1。
(Ⅰ)求椭圆C的方程:
(Ⅱ)是否存在直线l,当直线l交椭圆于P,Q两点时,使点F恰为△POM的垂心。若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:湖南省模拟题 题型:解答题

已知椭圆C:,两直线l1:x=-,l2:x=,直线l1为抛物线E:y2=16x的准线,直线l:x+2y-4=0与椭圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果椭圆C的左顶点为A,右焦点为F,过F的直线与椭圆C交于P,Q两点,直线AP,AQ与直线l2分别交于N,M两点,求证:四边形MNPQ的对角线的交点是定点。

查看答案和解析>>

科目: 来源:天津模拟题 题型:解答题

如图,椭圆C:的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若垂直于x轴的动直线与椭圆交于A,B两点,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

同步练习册答案