相关习题
 0  240529  240537  240543  240547  240553  240555  240559  240565  240567  240573  240579  240583  240585  240589  240595  240597  240603  240607  240609  240613  240615  240619  240621  240623  240624  240625  240627  240628  240629  240631  240633  240637  240639  240643  240645  240649  240655  240657  240663  240667  240669  240673  240679  240685  240687  240693  240697  240699  240705  240709  240715  240723  266669 

科目: 来源: 题型:解答题

20.如图1所示的平面图形中,ABCD是边长为2的正方形,△HDA和△GDC都是以D为直角顶点的等腰直角三角形,点E是线段GC的中点.现将△HDA和△GDC分别沿着DA,DC翻折,直到点H和G重合为点P.连接PB,得如图2的四棱锥.

(Ⅰ)求证:PA∥平面EBD;
(Ⅱ)求二面角C-PB-D大小.

查看答案和解析>>

科目: 来源: 题型:选择题

19.若双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线与圆x2+(y-2)2=1至多有一个交点,则双曲线的离心率为(  )
A.$(\;1,\;\sqrt{2}]$B.$(\;1,\;\sqrt{3}]$C.(1,2]D.(1,4]

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知全集U=R,集合A={x|x2+x>0},集合B=$\{y|y=\frac{2}{{{2^x}+1}},x∈R\}$,则(∁UA)∪B=(  )
A.[0,2)B.[-1,0]C.[-1,2)D.(-∞,2)

查看答案和解析>>

科目: 来源: 题型:填空题

17. 2017年5月14日“一带一路”国际合作高峰论坛在北京举行,会议期间,达成了多项国际合作协议,其中有一项是在某国投资建设一个深水港码头.如图,工程师为了解深水港码头海域海底的构造,在海平面内一条直线上取A,B,C三点进行测量,已知AB=60cm,BC=120cm,在A处测得水深AD=120cm,在B处测得水深BE=200m,在C处测得水深CF=150m,则cos∠DEF=$-\frac{16}{65}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.若椭圆$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{4}$=1的两个焦点为F1,F2,P是椭圆上一点,若PF1⊥PF2,则△PF1F2的面积为4.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知f(x)=$\frac{1}{2}$x2-6x+8lnx在[m,m+1]上不是单调函数,则实数m的取值范围是(  )
A.(1,2)B.(3,4)C.(1,2]∪[3,4)D.(1,2)∪(3,4)

查看答案和解析>>

科目: 来源: 题型:选择题

14.抛物线C:y2=12x的准线与x轴交于点P,A是抛物线C上的一点,F是抛物线C的焦点,若|AP|=$\sqrt{2}$|AF|,则点A的横坐标为(  )
A.4B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.直线l与椭圆C:$\frac{{x}^{2}}{8}$$+\frac{{y}^{2}}{4}$=1相交于A,B两点,若直线l的方程为x-2y+1=0,则线段AB的中点坐标是(  )
A.(-$\frac{1}{3}$,-$\frac{1}{2}$)B.($\frac{1}{3}$,-$\frac{1}{3}$)C.(1,1)D.(-$\frac{1}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目: 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则双曲线的渐近方程是(  )
A.y=$±\frac{1}{4}$xB.y=$±\frac{1}{2}$xC.y=±2xD.y=±4x

查看答案和解析>>

科目: 来源: 题型:解答题

11.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出:
y=$\left\{\begin{array}{l}{-\frac{1}{8}{t}^{3}-\frac{3}{4}{t}^{2}+36t-\frac{629}{4},6≤t≤9}\\{\frac{1}{8}t+\frac{59}{4},9≤t≤10}\\{-3{t}^{2}+66t-345,10<t≤12}\end{array}\right.$
求从上午6点到中午12点,通过该路段用时最多的时刻.

查看答案和解析>>

同步练习册答案