相关习题
 0  240543  240551  240557  240561  240567  240569  240573  240579  240581  240587  240593  240597  240599  240603  240609  240611  240617  240621  240623  240627  240629  240633  240635  240637  240638  240639  240641  240642  240643  240645  240647  240651  240653  240657  240659  240663  240669  240671  240677  240681  240683  240687  240693  240699  240701  240707  240711  240713  240719  240723  240729  240737  266669 

科目: 来源: 题型:解答题

7.在直角坐标系xOy中,直线${C_1}:y=\sqrt{3}x$,曲线C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}+cosθ\\ y=-2+sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程和C2的普通方程;
(2)把C1绕坐标原点沿逆时针方向旋转$\frac{π}{3}$得到直线C3,C3与C2交于A,B两点,求|AB|.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在平面直角坐标系中,已知直线l的参数方程为$\left\{\begin{array}{l}x=m+t\\ y=t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,点F的极坐标为(2$\sqrt{2}$,π),且F在直线l上.
(Ⅰ)若直线l与曲线C交于A、B两点,求|FA|•|FB|的值;
(Ⅱ)求曲线C内接矩形周长的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在△ABC中,P在△ABC的三边上,MN是△ABC外接圆的直径,若AB=2,BC=3,AC=4,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围是2.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xoy中,已知直线$l:x=\frac{{\sqrt{3}}}{3}y+2$,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)写出直线l的极坐标方程;
(2)设直线l与曲线$\left\{\begin{array}{l}x={m^2}\\ y=2m\end{array}\right.$(m为参数)相交于A,B两点,求点P(2,0)到两点A,B的距离之积.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知三棱锥A-BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为(  )
A.$\frac{5\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{33}}{6}$D.$\sqrt{11}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)若曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,在曲线C上任取一点P,且点P在第一象限,求四边形OAPB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为$\sqrt{2}ρsin({θ-\frac{π}{4}})=3$.
(1)求曲线C的普通方程及直线l的直角坐标方程;
(2)设P是曲线C上的任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{24}{7-cos2θ}$.
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于不同两点A,B,求tanα的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=ax+$\frac{b}{x}+c({a>0}),g(x)=lnx$,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)若a=$\frac{1}{2}$,求函数f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(3)证明:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})+\frac{n}{{2({n+1})}}({n≥1})$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.从一批含有11只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)的值为(  )
A.$\frac{43}{13}$B.$\frac{42}{13}$C.$\frac{12}{13}$D.$\frac{6}{13}$

查看答案和解析>>

同步练习册答案