相关习题
 0  240568  240576  240582  240586  240592  240594  240598  240604  240606  240612  240618  240622  240624  240628  240634  240636  240642  240646  240648  240652  240654  240658  240660  240662  240663  240664  240666  240667  240668  240670  240672  240676  240678  240682  240684  240688  240694  240696  240702  240706  240708  240712  240718  240724  240726  240732  240736  240738  240744  240748  240754  240762  266669 

科目: 来源: 题型:解答题

9.已知数列{an}的通项公式是an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$.
(1)判断$\frac{98}{101}$是不是数列{an}中的一项;
(2)试判断数列{an}中的项是否都在区间(0,1)内;
(3)在区间($\frac{1}{3}$,$\frac{2}{3}$)内有无数列{an}中的项?若有,是第几项?若没有.请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

8.若曲线C1:x2+y2-2x=0与曲线C2:mx2-xy+mx=0有三个不同的公共点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.(-∞,0)∪(0,+∞)D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+4cosθ}\\{y=1+4sinθ}\end{array}\right.$(θ为参数),直线l经过定点P(3,4),倾斜角为$\frac{π}{6}$.
(Ⅰ)写出直线l的参数方程和曲线C的标准方程.
(Ⅱ)设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.直线$\left\{\begin{array}{l}x=\sqrt{2}-2t\\ y=\sqrt{3}+4t\end{array}\right.$(t为参数)的倾角是(  )
A.$arctan(-\frac{1}{2})$B.arctan(-2)C.$π-arctan\frac{1}{2}$D.π-arctan2

查看答案和解析>>

科目: 来源: 题型:解答题

5.在平面直角坐标系xoy中,直线${C_1}:\sqrt{3}x+y-4=0$,曲线${C_2}:\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.(φ$为参数),以以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(I)求C1,C2的极坐标方程;
(II)若曲线C3的极坐标方程为$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲线C3分别交C1,C2于点A,B两点,求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知:x2-6x-1=0,则x3-$\frac{1}{{x}^{3}}$=234.

查看答案和解析>>

科目: 来源: 题型:解答题

3.以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).
(1)求圆C的直角坐标;
(2)试判断直线l与圆C的位置关系.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设A,B为两个互斥事件,且P(A)>0,P(B)>0,则下列结论正确的是(  )
A.A与B相互独立B.若A,B相互独立,则A,B不互斥
C.A,B既相互独立又互斥D.A,B既不相互独立又不互斥

查看答案和解析>>

科目: 来源: 题型:解答题

1.将参数方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 为参数,t 为常数)化为普通方程.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

查看答案和解析>>

同步练习册答案