相关习题
 0  240575  240583  240589  240593  240599  240601  240605  240611  240613  240619  240625  240629  240631  240635  240641  240643  240649  240653  240655  240659  240661  240665  240667  240669  240670  240671  240673  240674  240675  240677  240679  240683  240685  240689  240691  240695  240701  240703  240709  240713  240715  240719  240725  240731  240733  240739  240743  240745  240751  240755  240761  240769  266669 

科目: 来源: 题型:填空题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,则z=2${\;}^{x-\frac{y}{2}}$的最小值为${2}^{-\frac{3}{2}}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.复数z=($\frac{1+i}{-1+i}$)2016+i3(i为虚数单位)的共轭复数为(  )
A.1+2iB.1+iC.1-iD.1-2i

查看答案和解析>>

科目: 来源: 题型:解答题

17.从参加数学竞赛的学生中抽出20名学生,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,回答下列问题:

(1)[79.5,89.5)这一组的频率和频数分别为多少?
(2)估计该次数学竞赛的及格率(60分及以上为及格);
(3)若从第一组和第三组的所有学生中随机抽取两人,求他们的成绩相差不超过10分的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知在△ABC中,三角A,B,C的对边分别为a,b,c,其满足(a-3b)cosC=c(3cosB-cosA),AF=2FC,则$\frac{AB}{BF}$的取值范围为(2,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=3x的定义域为R,满足f(a+2)=18,函数g(x)=λ•3ax-4x的定义域为[0,1].
(1)求实数a的值;
(2)若函数g(x)为定义域上单调减函数,求实数λ的取值范围;
(3)λ为何值时,函数g(x)的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知正实数m,n满足$\frac{1}{m+n}$+$\frac{1}{m-n}$=1,则3m+2n的最小值为3+$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.若(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中各项系数的和为2,则该展开式中常数项是(  )
A.-40B.-20C.40D.20

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,已知椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4({\sqrt{2}+1})$,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设P为该双曲线上异于顶点的任一点,直线OF1和PF2与椭圆的交点分别为A,B和C,D,其中A,C在x轴的同一侧.
(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点P,使得$|{\overrightarrow{AB}}|+|{\overrightarrow{CD}}|=\frac{3}{4}\overrightarrow{AB}•\overrightarrow{CD}$?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在五面体ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠ACF=60°,AD⊥CD,平面CDEF⊥平面ABCD,P是BC的中点,
(1)求异面直线BE与PF所成角的余弦值;
(2)在直线EF上,是否存在一点Q,使得PQ∥平面EBD,若存在,求出该点;若不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}a$,点E是PD中点.
(1)求证:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

同步练习册答案