相关习题
 0  240608  240616  240622  240626  240632  240634  240638  240644  240646  240652  240658  240662  240664  240668  240674  240676  240682  240686  240688  240692  240694  240698  240700  240702  240703  240704  240706  240707  240708  240710  240712  240716  240718  240722  240724  240728  240734  240736  240742  240746  240748  240752  240758  240764  240766  240772  240776  240778  240784  240788  240794  240802  266669 

科目: 来源: 题型:选择题

9.设函数$f(x)=\left\{\begin{array}{l}x-[x],x≥0\\ f(x+1)\;,x<0\end{array}\right.$其中[x]表示不超过x的最大整数如[-1.5]=-2,[2.5]=2,若直线y=k(x-1)(k<0)与函数y=f(x)的图象只有三个不同的交点,则k的取值范围为(  )
A.$[-\frac{1}{2},-\frac{1}{3}]$B.$(-\frac{1}{2},-\frac{1}{3})$C.$(-1,-\frac{1}{2}]$D.$(-1,-\frac{1}{2})$

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数$f(x)=sinx•cosx-\sqrt{3}cos({π+x})•cosx({x∈R})$.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象向右、向上分别平移$\frac{π}{4}、\frac{{\sqrt{3}}}{2}$个单位长度得到y=g(x)的图象,求y=g(x)在$({0,\frac{π}{4}}]$的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设Sn为数列{cn}的前n项和,an=2n,bn=50-3n,cn=$\left\{\begin{array}{l}{{a}_{n}{,a}_{n}{>b}_{n}}\\{{b}_{n}{,a}_{n}{<b}_{n}}\end{array}\right.$.
(1)求c4与c8的等差中项;
(2)当n>5时,设数列{Sn}的前n项和为Tn
(ⅰ)求Tn
(ⅱ)当n>5时,判断数列{Tn-34ln}的单调性.

查看答案和解析>>

科目: 来源: 题型:选择题

6.设向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围为(  )
A.[4,8]B.[4$\sqrt{2}$,8$\sqrt{2}$]C.(4,8)D.(4$\sqrt{2}$,8$\sqrt{2}$)

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知双曲线过点(2,$\sqrt{3}$),且一条渐近线方程为y=$\frac{1}{2}$x,则该曲线的标准方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}$-y2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

4.不等式(a-3)x2+2(a-3)x-4<0对于一切x∈R恒成立,那么a的取值范围是(  )
A.(-∞,-3)B.(-1,3]C.(-∞,-3]D.(-3,3]

查看答案和解析>>

科目: 来源: 题型:解答题

3.直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(其中t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2mρcosθ-4=0(其中m>0)
(1)点M的直角坐标为(2,2),且点M在曲线C内,求实数m的取值范围;
(2)若m=2,当α变化时,求直线被曲线C截得的弦长的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知曲线C1的参数方程是$\left\{{\begin{array}{l}{x=2cosϕ}\\{y=sinϕ}\end{array}}$(ϕ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ(tanα•cosθ-sinθ)=1.(其中α为常数,α∈(0,π),且α≠$\frac{π}{2}$),点A,B(A在x轴下方)是曲线C1与C2的两个不同的交点.
(1)求曲线C1的普通方程与C2的直角坐标方程;
(2)求|AB|的最大值及此时点B的直角坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则下列命题中的真命题是(  )
①将函数f(x)的图象向左平移$\frac{π}{3}$个单位,则所得函数的图象关于原点对称;
②将函数f(x)的图象向左平移$\frac{π}{6}$个单位,则所得函数的图象关于原点对称;
③当x∈[$\frac{π}{2}$,π]时,函数f(x)的最大值为$\sqrt{2}$;
④当x∈[$\frac{π}{2}$,π]时,函数f(x)的最大值为$\frac{{\sqrt{6}}}{2}$.
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,直四棱柱ABCD-A1B1C1D1,底面ABCD为平行四边形,且AB=AD=1,AA1=$\frac{{\sqrt{6}}}{2}$,∠ABC=60°.
(1)求证:AC⊥BD1
(2)求四面体D1-AB1C的体积.

查看答案和解析>>

同步练习册答案