相关习题
 0  240658  240666  240672  240676  240682  240684  240688  240694  240696  240702  240708  240712  240714  240718  240724  240726  240732  240736  240738  240742  240744  240748  240750  240752  240753  240754  240756  240757  240758  240760  240762  240766  240768  240772  240774  240778  240784  240786  240792  240796  240798  240802  240808  240814  240816  240822  240826  240828  240834  240838  240844  240852  266669 

科目: 来源: 题型:解答题

5.已知等差数列{an}中,a2=-1,a6=7.
(1)求数列{an}的通项公式;
(2)若bn=($\frac{1}{2}$)nan,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定义域.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若直线l1:$\sqrt{3}$x-3y+2=0绕着它与x轴的交点逆时针旋转30°得到直线l2,则直线l2的方程是$\sqrt{3}x-y+2=0$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.在△ABC中,内角A、B、C的对边分别为a、b、c,若acosB+bcosA=2ccosC,a+b=6,则三角形ABC的面积S△ABC的最大值是(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{2}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n(n≥1),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和等于(  )
A.$\frac{n}{n+1}$B.$\frac{n-1}{n}$C.$\frac{1}{n}$D.$\frac{1}{n+1}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.若不等式kx2+kx-1≤0(k为实数)的解集为R,则直线kx+y-2=0的斜率的最大值等于(  )
A.2B.4C.5D.8

查看答案和解析>>

科目: 来源: 题型:解答题

19.国内某汽车品牌一个月内被消费者投诉的次数用X表示,据统计,随机变量X的概率分布如下:
 X 0 2
 P 0.10.3  2a
(1)求a的值;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该汽车品牌在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

18.某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了A、B、C三类不同的题目,选手每答对一个A类、B类或C类的题目,将分别得到300分、200分、100分,但如果答错,则相应要扣去300分、200分、100分,根据平时训练经验,选手甲答对A类、B类或C类题目的概率分别为0.6、0.75、0.85,若腰每一次答题的均分更大一些,则选手甲应选择的题目类型应为B(填A、B或C)

查看答案和解析>>

科目: 来源: 题型:选择题

17.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率说法正确的是(  )
A.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黄色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黄色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.B.已知数列{an}满足a1=5,且${a_{n+1}}+2{a_n}=5×{3^n}$.
(1)求数列{an}的通项公式;
(2)令${b_n}=n({1-\frac{a_n}{3^n}})$,记Tn=|b1|+|b2|+…+|bn|,求Tn

查看答案和解析>>

同步练习册答案