相关习题
 0  240700  240708  240714  240718  240724  240726  240730  240736  240738  240744  240750  240754  240756  240760  240766  240768  240774  240778  240780  240784  240786  240790  240792  240794  240795  240796  240798  240799  240800  240802  240804  240808  240810  240814  240816  240820  240826  240828  240834  240838  240840  240844  240850  240856  240858  240864  240868  240870  240876  240880  240886  240894  266669 

科目: 来源: 题型:选择题

18.已知数列{an}各项的绝对值均为1,Sn为其前n项和.若S7=3,则该数列{an}的前七项的可能性有(  )种.
A.10B.20C.21D.42

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a$,其中a>0,若函数f(x)在区间(-2,0)内恰好有两个零点,则实数a的取值范围是(  )
A.(0,3)B.(3,+∞)C.$(0,\frac{1}{3})$D.$(\frac{1}{3},+∞)$

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知:z(1+2i)=3-i,则$\overline z$=(  )
A.$1+\frac{7}{5}i$B.$\frac{1}{5}+\frac{7}{5}i$C.$\frac{1}{3}-\frac{7}{3}i$D.$\frac{5}{3}-\frac{7}{3}i$

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}的前n项的和为Sn,且Sn+$\frac{1}{2}$an=1(n∈N*
(1)求{an}的通项公式;
(2)设bn=-log3(1-Sn),设Cn=$\frac{4{b}_{n+1}}{{{b}_{n}}^{2}•{{b}^{2}}_{n+2}}$,求数列{Cn}的前n项的和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,-1),则$\frac{|PF|}{|PA|}$的最小值等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数y=f(x)的图象关于y轴对称,当x∈(0,+∞)时,f(x)=log2x,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目: 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$??(θ为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.函数f(x)=ax+lnx在x=1处的切线与直线x-y+1=0垂直,则实数a=-2.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lgx,x>0}\end{array}\right.$,若函数y=|f(x)|-a有4个零点x1,x2,x3,x4,则x1+x2+x3+x4的取值范围是(  )
A.(0,$\frac{81}{10}$]B.(0,$\frac{101}{10}$]C.(0,+∞)D.(2,$\frac{81}{10}$]

查看答案和解析>>

科目: 来源: 题型:选择题

9.函数 f(x)=Asin(ω x+φ)(A>0,ω>0)的部分图象如图所示,则f($\frac{11π}{24}$)的值为(  )
A.-$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

同步练习册答案