相关习题
 0  240720  240728  240734  240738  240744  240746  240750  240756  240758  240764  240770  240774  240776  240780  240786  240788  240794  240798  240800  240804  240806  240810  240812  240814  240815  240816  240818  240819  240820  240822  240824  240828  240830  240834  240836  240840  240846  240848  240854  240858  240860  240864  240870  240876  240878  240884  240888  240890  240896  240900  240906  240914  266669 

科目: 来源: 题型:选择题

9.(A组题)已知实数x、y满足|x|≤2,|y|≤1,则任取其中一对x、y的值,能使得x2+y2≤1的概率为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{8}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图,棱长为$\sqrt{2}$的正四面体ABCD的三个顶点A,B,C分别在空间直角坐标系的坐标轴Ox,Oy,Oz上,则定点D的坐标为(  )
A.(1,1,1)B.$({\sqrt{2},\sqrt{2},\sqrt{2}})$C.$({\sqrt{3},\sqrt{3},\sqrt{3}})$D.(2,2,2)

查看答案和解析>>

科目: 来源: 题型:选择题

7.若直线ax+by+6=0与圆x2+y2+4x-1=0切于点P(-1,2),则ab为(  )
A.8B.2C.-8D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

6.将函数f(x)=cosx图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向右平移$\frac{π}{6}$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{0,\frac{aπ}{9}}]$与[2aπ,4π]上均单调递增,则实数a的取值范围为(  )
A.$[{\frac{13}{12},2})$B.$[{\frac{13}{12},\frac{3}{2}}]$C.$[{\frac{7}{6},2})$D.$[{\frac{7}{6},3}]$

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知平面向量$\overrightarrow a=(1,x),\overrightarrow b=(2x+3,-x)$  (x∈N)
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$垂直,求x;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目: 来源: 题型:选择题

4.把函数$y=cos2x+\sqrt{3}sin2x$的图象经过变化而得到y=2sin2x的图象,这个变化是(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目: 来源: 题型:选择题

3.某中学教务处采用系统抽样方法,从学校高一年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是(  )
A.177B.417C.157D.367

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知:$x{(x-2)^8}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_9}{(x-1)^9}$,则a6=(  )
A.-28B.-448C.112D.448

查看答案和解析>>

科目: 来源: 题型:选择题

1.从混有3张假钞的10张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为(  )
A.$\frac{1}{8}$B.$\frac{2}{9}$C.$\frac{1}{15}$D.$\frac{3}{17}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“穿越点”x0,在区间(0,5]上任取一个数a,则函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案