相关习题
 0  240797  240805  240811  240815  240821  240823  240827  240833  240835  240841  240847  240851  240853  240857  240863  240865  240871  240875  240877  240881  240883  240887  240889  240891  240892  240893  240895  240896  240897  240899  240901  240905  240907  240911  240913  240917  240923  240925  240931  240935  240937  240941  240947  240953  240955  240961  240965  240967  240973  240977  240983  240991  266669 

科目: 来源: 题型:填空题

19.如图,网格上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为3.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{21}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.要得到函数y=$\frac{\sqrt{3}}{2}$sin2x+cos2x-$\frac{1}{2}$的图象,只需将y=sinx图象上所有的点(  )
A.横坐标变为原来的一半,纵坐标不变,再向左平移$\frac{π}{6}$个单位
B.横坐标变为原来的两倍,纵坐标不变,再向左平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{12}$个单位,再将所得各点的横坐标变为原来的两倍,纵坐标不变
D.向左平移$\frac{π}{6}$个单位,再将所得各点的横坐标变为原来的一半,纵坐标不变

查看答案和解析>>

科目: 来源: 题型:解答题

16.(Ⅰ)已知${(2x-1)^{10}}={a_0}+{a_1}(x-1)+{a_2}(x-1{)^2}+…+{a_{10}}{(x-1)^{10}}$,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10
(ii)求a7
(Ⅱ)2017年5月,北京召开“一带一路”国际合作高峰论坛.组委会将甲、乙、丙、丁、戊五名志愿者分配到翻译、导游、礼仪、司机四个不同的岗位,每个岗位至少有一人参加,且五人均能胜任这四个岗位.
(i)若每人不准兼职,则不同的分配方案有几种?
(ii)若甲乙被抽调去别的地方,剩下三人要求每人必兼两职,则不同的分配方案有几种?

查看答案和解析>>

科目: 来源: 题型:选择题

15.在△ABC中,面积$S=\frac{{\sqrt{3}}}{2}$,c=2,B=60°,则a=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

14.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线在正方形內的部分)的点的个数的估计值为(  )
A.1193B.1359C.2718D.3413

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,面积为S的正方形ABCD中有一个不规则的图形M,可以用随机模拟方法近似计算M的面积,在正方向ABCD中随机投掷3600个点,若恰好有1200个点落入M中,则M的面积的近似值为$\frac{S}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.设a,b∈R,则“$\frac{{a}^{2}}{a-b}$<0”是“a<b”的(  )条件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目: 来源: 题型:选择题

11.△ABC的内角A、B、C的对边分别为a、b、c.已知a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,则c=(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知Sn为数列{an}的前n项和,且Sn=3n+1,则数列{an2}的前n项和Tn=$\frac{{9}^{n}+23}{2}$.

查看答案和解析>>

同步练习册答案