相关习题
 0  240833  240841  240847  240851  240857  240859  240863  240869  240871  240877  240883  240887  240889  240893  240899  240901  240907  240911  240913  240917  240919  240923  240925  240927  240928  240929  240931  240932  240933  240935  240937  240941  240943  240947  240949  240953  240959  240961  240967  240971  240973  240977  240983  240989  240991  240997  241001  241003  241009  241013  241019  241027  266669 

科目: 来源: 题型:选择题

10.已知角α的终点经过点P(3,-$\sqrt{3}$),则tanα的值是(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.△ABC中,角A,B,C的对边分别为a,b,c,且满足a2+c2-b2=ac,${\overrightarrow{CA}^{\;}}{•^{\;}}\overrightarrow{AB}>0$,$b=\sqrt{3}$,则a+c的取值范围是(  )
A.(2,3)B.$(\sqrt{3},3)$C.(1,3)D.(1,3]

查看答案和解析>>

科目: 来源: 题型:选择题

8.将函数y=f(x)的图象上各点的横坐标缩短到原来的一半(纵坐标不变),再将其纵坐标伸长到原来的3倍(横坐标不变)得到的图象对应的函数解析式为(  )
A.$y=\frac{1}{3}f(2x)$B.y=3f(2x)C.$y=\frac{1}{3}f(\frac{x}{2})$D.$y=3f(\frac{x}{2})$

查看答案和解析>>

科目: 来源: 题型:解答题

7.设命题p:x>m是2x-5>0的必要而不充分条件;设命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$$+\frac{{y}^{2}}{2-m}$=1表示双曲线
(Ⅰ)若“p∧q”为真命题,求实数m的取值范围
(Ⅱ)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R,已知f(x)在x=3处取得极值,
(Ⅰ)求f(x)在点A(1,f(1))处的切线方程
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知a=tan$\frac{2π}{5}$,b=tan(-$\frac{2π}{3}$),c=cos$\frac{2π}{5}$,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目: 来源: 题型:解答题

4.在极坐标系中,设直线$l:ρcos({θ+\frac{π}{3}})=2$与圆C:ρ=2rcosθ(r>0)相切,求r的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数g(x)=x2+ln(x+a),其中a为常数.
(1)当a=0时,求g(x)在(1,1)处的切线方程;
(2)讨论函数g(x)的单调性;
(3)若g(x)存在两个极值点x1,x2,求证:无论实数a取何值都有$\frac{g({x}_{1})+g({x}_{2})}{2}$>g($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在底面为平行四边形的四棱锥P-ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.
(1)求证:AC⊥PB;
(2)当二面角E-AC-D的大小为45°时,求AP的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设命题p:直线mx-y+1=0与圆(x-2)2+y2=4有公共点;设命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示双曲线.
(1)若“p∧q”为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案