相关习题
 0  240851  240859  240865  240869  240875  240877  240881  240887  240889  240895  240901  240905  240907  240911  240917  240919  240925  240929  240931  240935  240937  240941  240943  240945  240946  240947  240949  240950  240951  240953  240955  240959  240961  240965  240967  240971  240977  240979  240985  240989  240991  240995  241001  241007  241009  241015  241019  241021  241027  241031  241037  241045  266669 

科目: 来源: 题型:选择题

4.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的时间为6min,则客船在静水中的速度为(
A.6$\sqrt{2}$km/hB.8km/hC.2$\sqrt{34}$km/hD.10km/h

查看答案和解析>>

科目: 来源: 题型:选择题

3.某几何体的三视图如图所示,其中俯视图是半圆里面内切一个小圆,若该几何体的表面积为16+16π,则正视图中的a值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图是一个四面体的三视图,则该四面体的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(1,2sinx),$\overrightarrow{b}$=(1,cosx-sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)求函数f(x)最小正周期;
(2)求函数f(x)的单调递增区间;
(3)当x∈[0,$\frac{π}{2}$]时,若方程|f(x)|=m有两个不等的实数根,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知$f(x)=2{cos^2}(x+\frac{π}{6})+sin(2x+\frac{π}{3})$,则y=f(x)的对称轴为(  )
A.$x=\frac{π}{24}$B.$x=\frac{11π}{24}$C.$x=\frac{π}{25}$D.$x=\frac{11π}{26}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$).若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求f(x)递增区间;
(2)△ABC中,角A,B,C的对边分别是a,b,c,且(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$3\sqrt{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.设函数f(x)=sin2ωx-cos2ωx+2$\sqrt{3}$sinωxcosωx+λ的图象关于直线x=π对称,其中ω,λ为常数,且ω∈($\frac{1}{2}$,1).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若y=f(x)的图象经过点($\frac{π}{4}$,0),求函数f(x)在区间[0,$\frac{3π}{5}$]上的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.函教f(x)=x2-mx+(m+3)的两个零点均在(1,+∞)内,求m的取值范围.

查看答案和解析>>

同步练习册答案