相关习题
 0  240905  240913  240919  240923  240929  240931  240935  240941  240943  240949  240955  240959  240961  240965  240971  240973  240979  240983  240985  240989  240991  240995  240997  240999  241000  241001  241003  241004  241005  241007  241009  241013  241015  241019  241021  241025  241031  241033  241039  241043  241045  241049  241055  241061  241063  241069  241073  241075  241081  241085  241091  241099  266669 

科目: 来源: 题型:选择题

9.关于二项式(x-1)2005,有下列命题:
①该二项展开式中非常数项的系数之和是1;
②该二项展开式中第六项为$C_{2005}^6{x^{1999}}$;
③该二项展开式中系数最大的项为第1002项;
④当x=2006时,(x-1)2005除以2006的余数是2005.
其中所有正确命题的序号是(  )
A.②④B.②③C.①③D.①④

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知tan($\frac{π}{4}$+θ)=3,求:
(1)tanθ的值;
(2)sin2θ-2cos2θ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.△ABC中,已知cosA=$\frac{5}{13}$,sinB=$\frac{3}{5}$,则cosC的值为(  )
A.-$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$或$\frac{56}{65}$D.$\frac{16}{65}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.将-$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}$sinα化成Asin(α+β)(A>0,0<β<2π)的形式,以下式子正确的是(  )
A.sin(α+$\frac{4π}{3}$)B.sin(α+$\frac{7π}{6}$)C.-sin(α+$\frac{π}{3}$)D.sin(α-$\frac{2π}{3}$)

查看答案和解析>>

科目: 来源: 题型:填空题

5.若函数f(x)=log0.2(kx2-kx+1)的定义域为R,则实数k的取值范围是[0,4).

查看答案和解析>>

科目: 来源: 题型:填空题

4.cos2θ+cos2(θ+120°)+cos2(θ+240°)的值是$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,则cos(x-y)=$\frac{59}{72}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知lg2=t,用含t的代数式表示lg25=2-2t.

查看答案和解析>>

科目: 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则f(-2)+f(log26)=(  )
A.2B.6C.8D.14

查看答案和解析>>

科目: 来源: 题型:解答题

20.某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.
(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
赞成不赞成合计
城镇居民
农村居民
合计
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$
P(K2≥k00.100.050.005
k02.7063.8417.879
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为x,试求x的分布列及数学期望E(x).

查看答案和解析>>

同步练习册答案