相关习题
 0  240926  240934  240940  240944  240950  240952  240956  240962  240964  240970  240976  240980  240982  240986  240992  240994  241000  241004  241006  241010  241012  241016  241018  241020  241021  241022  241024  241025  241026  241028  241030  241034  241036  241040  241042  241046  241052  241054  241060  241064  241066  241070  241076  241082  241084  241090  241094  241096  241102  241106  241112  241120  266669 

科目: 来源: 题型:填空题

20.若不等式(a2+a)x2-ax+1>0对任意实数x都成立,则实数a的取值范围是{x|-$\frac{4}{3}$<a<-1或a=0}.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知直线l:4x-3y+m=0(m<0)被圆C:x2+y2+2x-2y-6=0所截的弦长是圆心C到直线l的距离的2倍,则m等于(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知sinα-cosα=$\frac{4}{3}$,α∈[$\frac{π}{2}$,$\frac{3π}{4}$],则tan2α=(  )
A.$\frac{7\sqrt{2}}{8}$B.$\frac{5\sqrt{2}}{4}$C.$\frac{7\sqrt{3}}{8}$D.$\frac{5\sqrt{3}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,且a2=2,S4=9,则a6=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知全集U=Z,集合A={-3,-1,0,1,2},B={x|x=2k-1,k∈N},则A∩∁uB=(  )
A.{0,1,2}B.{-3,-1,0}C.{-1,0,2}D.{-3,0,2}

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知正数a,b满足ab=a+b+1,则a+2b的最小值为7.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知各项均不为零的数列{an},定义向量$\overrightarrow{{c}_{n}}$=(an,an+1),$\overrightarrow{{b}_{n}}$=(n,n+1),n∈N*.下列命题中真命题是(  )
A.若任意n∈N*总有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等比数列
B.若任意n∈N*总有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等比数列
C.若任意n∈N*总有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等差数列
D.若任意n∈N*总有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等差数列

查看答案和解析>>

科目: 来源: 题型:选择题

13.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆B的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆B,其“优美函数”有无数个;
②函数f(x)=ln(x2+$\sqrt{{x}^{2}+1}$可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是(  )
A.①③B.①③④C.②③D.①④

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知an=log(n+1)(n+2)(n∈N+),我们把使乘积a1•a2•a3…•an为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为(  )
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目: 来源: 题型:选择题

11.在△ABC中,角A,B,C对边的边长分别为a,b,c,给出下列四个结论:
①以$\frac{1}{a},\;\frac{1}{b},\;\frac{1}{c}$为边长的三角形一定存在;
②以$\sqrt{a},\;\sqrt{b},\;\sqrt{c}$为边长的三角形一定存在;
③以a2,b2,c2为边长的三角形一定存在;
④以$\frac{a+b}{2},\;\frac{b+c}{2},\;\frac{c+a}{2}$为边长的三角形一定存在.
那么,正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案