相关习题
 0  240978  240986  240992  240996  241002  241004  241008  241014  241016  241022  241028  241032  241034  241038  241044  241046  241052  241056  241058  241062  241064  241068  241070  241072  241073  241074  241076  241077  241078  241080  241082  241086  241088  241092  241094  241098  241104  241106  241112  241116  241118  241122  241128  241134  241136  241142  241146  241148  241154  241158  241164  241172  266669 

科目: 来源: 题型:选择题

3.如图所示,三棱柱ABC-A1B1C1的侧棱长和底边各边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,则该三棱柱的侧视图的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知变换T把平面上的点A(2,0),B(0,$\sqrt{3}$)分别变换成点A'(2,2),B'(-$\sqrt{3}$,$\sqrt{3}$).
(1)试求变换T对应的矩阵M;
(2)若曲线C在变换T的作用下所得到的曲线的方程为x2-y2=4,求曲线C的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

1.一个如图放置的三棱柱的底面是正三角形,侧棱与底面垂直,它的左视图是边长为$\sqrt{3}$的正方形,则它的外接球的表面积为(  )
A.B.$\frac{25π}{3}$C.D.$\frac{28π}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{-1}\end{array}]$,B=$[\begin{array}{l}{3}\\{1}\end{array}]$满足AX=B,求矩阵X.

查看答案和解析>>

科目: 来源: 题型:解答题

19.命题“?x∈[1,+∞),f(x)=x2+x+m≥0”是假命题,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

18.以下命题:
①y=x+$\frac{1}{x}$≥2,
②若a>0,b>0且a+b=2,则ab≤1,
③$\sqrt{x}$+$\frac{4}{\sqrt{x}}$的最小值为4
④a∈R,a2+1>2a.
其中正确命题的序号是②③.

查看答案和解析>>

科目: 来源: 题型:解答题

17.变换T1是绕原点逆时针旋转90°的变换,对应的变换矩阵为M1;变换T2是将点P(x,y)变为P1(2x+y,y),对应的变换矩阵为M2,求点(-1,2)先在变换T1作用下,再在变换T2的作用下点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,设OP与x轴的正方向的夹角为α,OP'与OP的夹角为β,现将OP绕O点旋转到与OP'重合,旋转角β=$\frac{π}{6}$,则这个旋转变换对应的矩阵为$[\begin{array}{l}{\frac{\sqrt{3}}{2}}&{-\frac{1}{2}}\\{\frac{1}{2}}&{\frac{\sqrt{3}}{2}}\end{array}]$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为仅含cosx的二次多项式.
(1)类比cos2x公式的推导方法,试用仅含有cosx的多项式表示cos3x;
(2)已知3×18°=90°-2×18°,试结合第(1)问的结论,求出sin18°的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在三棱锥P-ABC中,PA⊥平面ABC,平面PAC⊥平面PBC,则直角△ABC中的三个角A,B,C中,角为直角C(从A,B,C中选择一个填空)

查看答案和解析>>

同步练习册答案