相关习题
 0  240998  241006  241012  241016  241022  241024  241028  241034  241036  241042  241048  241052  241054  241058  241064  241066  241072  241076  241078  241082  241084  241088  241090  241092  241093  241094  241096  241097  241098  241100  241102  241106  241108  241112  241114  241118  241124  241126  241132  241136  241138  241142  241148  241154  241156  241162  241166  241168  241174  241178  241184  241192  266669 

科目: 来源: 题型:解答题

16.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2\sqrt{5}cosα}\\{y=4+2\sqrt{5}sinα}\end{array}\right.$,(a为参数),P是曲线C1上的动点,M为线段OP的中点,设点M的轨迹为曲线C2
(Ⅰ) 求C2的极坐标方程;
(Ⅱ) 若射线θ=$\frac{π}{6}$与曲线C1异于极点的交点为A,与曲线C2异于极点的交点为B,求|AB|.

查看答案和解析>>

科目: 来源: 题型:选择题

15.若x=$(\frac{1}{5})^{-0.3}$,y=log52,z=${e}^{-\frac{1}{2}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知f(x)=$\left\{\begin{array}{l}{{log}_{\frac{1}{2}}x(x>0)}\\{|4x+1|(x≤0)}\end{array}\right.$,有f(a)=f(b)=f(c),a<b<c,则(a+b+c)c的取值范围是(  )
A.[-$\frac{1}{16}$,$\frac{1}{2}$)B.[0,$\frac{1}{2}$)C.[-$\frac{1}{16}$,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目: 来源: 题型:选择题

13.若θ是第四象限角,则下列结论正确的是(  )
A.sinθ>0B.cosθ<0C.tanθ>0D.sinθtanθ>0

查看答案和解析>>

科目: 来源: 题型:解答题

12.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数)曲线C1横坐标扩大为原来的两倍,纵坐标扩大为原来的三倍得到曲线C2
(1)以原点为极点,x轴正半轴为极轴且单位长度一样的极坐标系中,求曲线C2的极坐标方程
(2)若M,N两点在曲线C2上,且OM⊥ON.求$\frac{1}{{{{|{OM}|}^2}}}+\frac{1}{{{{|{ON}|}^2}}}$的值.
(3)已知C3的参数方程为$\left\{\begin{array}{l}x=1-t\\ y=1+t\end{array}\right.(t为参数),P为{C_2}上的一点,求点P到直线{C_3}$的最大距离.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在极坐标系中,圆 C以点C(2,$\frac{π}{3}$)为圆心,2为半径.在以极点为原点,以极轴为x轴正半轴且单位长度一样的直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(2,$\sqrt{3}$),求|PA|+|PB|.

查看答案和解析>>

科目: 来源: 题型:填空题

10.若圆C:x2+y2-2x-4y+m=0与直线x+2y-3=0相交于M,N两点,且|MN|=$\frac{2\sqrt{5}}{5}$,则实数m的值为4.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知集合A={x|x2-x-6>0},B={x|1<x≤4},则(∁RA)∩B等于(  )
A.(1,2]B.(3,4]C.(1,3)D.(1,3]

查看答案和解析>>

科目: 来源: 题型:填空题

8.设函数f(x)在R上的导函数为f′(x),对?x∈R有f(x)+f(-x)=x2,且在(0,+∞)上有f′(x)-x<0,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是[2,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

7.经过点A(1,0)作曲线f(x)=x2的切线,则此切线的方程为y=0或y=4x-4.

查看答案和解析>>

同步练习册答案