相关习题
 0  241023  241031  241037  241041  241047  241049  241053  241059  241061  241067  241073  241077  241079  241083  241089  241091  241097  241101  241103  241107  241109  241113  241115  241117  241118  241119  241121  241122  241123  241125  241127  241131  241133  241137  241139  241143  241149  241151  241157  241161  241163  241167  241173  241179  241181  241187  241191  241193  241199  241203  241209  241217  266669 

科目: 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow{b}$=(sin10°,cos10°).若t为实数,且$\overrightarrow{u}$=$\overrightarrow{a}$+t$\overrightarrow{b}$,则|$\overrightarrow{u}$|的最小值为(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知偶函数f(x)满足f(x)=f(π-x),当x∈[-$\frac{π}{2}$,0]时,f(x)=2x-cosx,则函数f(x)在区间[0,π]内的零点的个数(  )
A.5B.4C.3D.2

查看答案和解析>>

科目: 来源: 题型:解答题

10.定义:在等式(x2+x+1)n=${D}_{n}^{0}{x}^{2n}$${+D}_{n}^{1}{x}^{2n-1}{+D}_{n}^{2}{x}^{2n-2}+…{+D}_{n}^{2n-1}x{+D}_{n}^{2n}$(n∈N)中,把${D}_{n}^{0}{,D}_{n}^{1}{,D}_{n}^{2}$,…,${D}_{n}^{2n}$叫做三项式的n次系数列(如三项式的1次系数列是1,1,1).
(1)填空:三项式的2次系数列是1,2,3,2,1;三项式的3次系数列是1,3,6,7,6,3,1.
(2)由杨辉三角数阵表可以得到二项式系数的性质${C}_{n+1}^{k}{=C}_{n}^{k}{+C}_{n}^{k-1}$,类似的请用三项式n次系数列中的系数表示${D}_{n+1}^{k+1}$(1≤k≤2n-1,k∈N)(无须证明);
(3)求${D}_{6}^{3}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.近几年来,在欧美等国家流行一种“数独”推理游戏,游戏规则如下:①9×9的九宫格子中,分成9个3×3的小九宫格,用1,2,3,…,9这9个数字填满整个格子,且每个格子只能填一个数;②每一行与每一列以及每个小九宫格里分别都有1,2,3,…9的所有数字.根据图中已填入的数字,可以判断A处填入的数字是(  )
A.1B.2C.8D.9

查看答案和解析>>

科目: 来源: 题型:选择题

8.将5名大学生分配到A,B,C 3个乡镇去任职,每个乡镇至少一名,那么A镇分得两位大学生的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.某中学高三从甲、乙两个班中各选出7名同学参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y的值为(  )
A.7B.10C.9D.8

查看答案和解析>>

科目: 来源: 题型:选择题

6.我国古代数学名著《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2-$\frac{1}{2-\frac{1}{2-…}}$中“…”即代表无限次重复,但原式是个定制x,这可以通过方程2-$\frac{1}{x}$=x解得x=1,类比之,$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=(  )
A.$\sqrt{2}$B.-1或2C.2D.4

查看答案和解析>>

科目: 来源: 题型:解答题

5.某地高中年级学生某次身体素质体能测试的原始成绩采用百分制,已知这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制,各等级划分标准见下表,并规定:A,B,C 三级为合格,D 级为不合格.
 百分制[85,100][70,85)[60,70)[50,60)
 等级 A B C D
为了了解该地高中年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(Ⅰ)求n及频率分布直方图中 x,y 的值;
(Ⅱ)根据统计思想方法,以事件发生的频率作为相应事件发生的概率,若在该地高中学生中任选3 人,求至少有1人成绩是合格等级的概率;
(Ⅲ)上述容量为n 的样本中,从 A、C 两个等级的学生中随机抽取了3 名学生进行调研,记ξ为所抽取的3 名学生中成绩为 A 等级的人数,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中含x项的系数为20,求展开式中含x2项的系数的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知扇形的半径为6,圆心角为120°,则扇形的弧长为4π.

查看答案和解析>>

同步练习册答案