相关习题
 0  241083  241091  241097  241101  241107  241109  241113  241119  241121  241127  241133  241137  241139  241143  241149  241151  241157  241161  241163  241167  241169  241173  241175  241177  241178  241179  241181  241182  241183  241185  241187  241191  241193  241197  241199  241203  241209  241211  241217  241221  241223  241227  241233  241239  241241  241247  241251  241253  241259  241263  241269  241277  266669 

科目: 来源: 题型:填空题

7.设命题P:存在n∈N,使n2>2n,则¬P为任意n∈N,n2≤2n

查看答案和解析>>

科目: 来源: 题型:填空题

6.若矩阵A=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,B=$[\begin{array}{l}{4}&{3}\\{2}&{1}\end{array}]$,则AB=$[\begin{array}{l}{8}&{5}\\{20}&{13}\end{array}]$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知$\overrightarrow{m}$=(2sinx,$\sqrt{3}$cos2x),$\overrightarrow{n}$=(cosx,2),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\sqrt{3}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且sinB+sinC=$\frac{13\sqrt{3}}{14}$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,$\overrightarrow{e}$为单位向量,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{e}$的最大值为$\sqrt{19}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(2,-$\sqrt{3}$),$\overrightarrow{b}$=(sinθ,1),且θ∈(0,$\frac{π}{2}$),若$\overrightarrow{a}$⊥$\overrightarrow{b}$
(1)求θ的值;
(2)求cos($\frac{θ}{2}$+$\frac{π}{4}$)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期及对称轴;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]上的最小值及所对应的x值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知偶函数f(x)满足f(x)=f(π-x),当x∈[-$\frac{π}{2}$,0]时,f(x)=2x-cosx,则函数f(x)在区间[-π,π]内的零点个数为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=sin2x-$\sqrt{3}$sinxcosx+$\frac{1}{2}$,g(x)=mcos(x+$\frac{π}{3}$)-m+2
(1)若对任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围;
(2)若对任意的x∈[0,π],均有f(x)≥g(x),求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,等边△ABC中,AB=2,M为△ABC内一动点,∠BMC=120°;
(Ⅰ)若BM=1,求CM;
(Ⅱ)若∠AMB=90°,求sin∠ABM.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点M(0,$\sqrt{3}$)与点F2的连线交C于点N,且N是线段MF2的中点,F1N⊥MF2,则C的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}+2}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案