相关习题
 0  241121  241129  241135  241139  241145  241147  241151  241157  241159  241165  241171  241175  241177  241181  241187  241189  241195  241199  241201  241205  241207  241211  241213  241215  241216  241217  241219  241220  241221  241223  241225  241229  241231  241235  241237  241241  241247  241249  241255  241259  241261  241265  241271  241277  241279  241285  241289  241291  241297  241301  241307  241315  266669 

科目: 来源: 题型:选择题

13.与圆的有关性质类比,可以推出球的有关性质,给出以下类比:
①圆心与弦(非直径)中点的连线垂直弦类比得到球心与界面圆(不经过球心的小截面圆)圆心的连线垂直于截面;
②与圆心距离相等的两条弦长相等类比与球心距离相等额两个截面圆的面积相等;
③圆的周长C=πd类比球的表面积S=πd2
④圆的面积S=πr2类比球的体积V=πr3
其中类比正确的是(  )
A.①②④B.②③C.①②③D.②③④

查看答案和解析>>

科目: 来源: 题型:选择题

12.在平面上,如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形,若两个相似三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,如果面数相同的多面体的对应面相似,有相同的相似比且对应多面角相等,那么这两个多面体叫相似多面体;若两个相似四面体的棱长比为1:2,则它们的体积比为(  )
A.1:2B.1:4C.1:6D.1:8

查看答案和解析>>

科目: 来源: 题型:填空题

11.在平面几何里有射影定理:“设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD•BC”扩展到空间,若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,点O是A在底面BCD上的射影,且O在△BCD内,类比平面上三角形的射影定理,△ABC、△BOC、△BCD三者的面积关系是(S△ABC2=S△BOC.S△BDC..

查看答案和解析>>

科目: 来源: 题型:填空题

10.在平面几何中:△ABC的∠C的内角平分线CE分AB所成线段的比为$\frac{AC}{BC}$=$\frac{AE}{BE}$.把这个结论类比到空间:在三棱锥A-BCD中(如图),平面DEC平分二面角-CD-B且与AB相交于E,则得到类比的结论是$\frac{AE}{EB}$=$\frac{{S}_{△ACD}}{{S}_{△BCD}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.平面内“正三角形内一点到三边距离之和是一个定值”,类比到空间的结论为正四面体内一点到四个面距离之和是一个定值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若$\frac{a_1}{1}=\frac{a_2}{2}=\frac{a_3}{3}=\frac{a_4}{4}$=k,则h1+2h2+3h3+4h4=$\frac{2S}{k}$.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若$\frac{S_1}{1}=\frac{S_2}{2}=\frac{S_3}{3}=\frac{S_4}{4}$=K,则H1+2H2+3H3+4H4等于(  )
A.$\frac{V}{2K}$B.$\frac{2V}{K}$C.$\frac{V}{3K}$D.$\frac{3V}{K}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.设函数f(x)=|2x-1|-|x-4|
(1)解不等式f(x)>2;
(2)求函数y=f(x)的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知△ABC的三条边长a,b,c,证明:$\frac{|{a}^{2}-{b}^{2}|}{c}$+$\frac{|{b}^{2}-{c}^{2}|}{a}$≥$\frac{|{c}^{2}-{a}^{2}|}{b}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知直线l与直线3x+4y-7=0平行,和两坐标轴的正半轴相交,且在第一象限内所成的三角形的面积为18,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{1}{2}$a=b,sinC=$\frac{sinA+sinB}{2}$.
(1)求cosA的值;
(2)若3S△ABC=8$\sqrt{15}$,求△ABC中的c边长.

查看答案和解析>>

同步练习册答案