相关习题
 0  241172  241180  241186  241190  241196  241198  241202  241208  241210  241216  241222  241226  241228  241232  241238  241240  241246  241250  241252  241256  241258  241262  241264  241266  241267  241268  241270  241271  241272  241274  241276  241280  241282  241286  241288  241292  241298  241300  241306  241310  241312  241316  241322  241328  241330  241336  241340  241342  241348  241352  241358  241366  266669 

科目: 来源: 题型:解答题

11.已知函数f(x)=|x-$\frac{1}{2}$|+|2x+1|.
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=m,且|x-2|≤a+2b对任意的正实数a,b恒成立,求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在直角坐标系xOy中,直线l过点P (3,$\sqrt{5}$)且倾斜角为$\frac{3}{4}$π.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(Ⅰ)求直线l的一个参数方程和圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,求|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.设a∈R,函数f(x)=alnx-x.
(I)若f(x)无零点,求实数a的取值范围;
(II)若f(x)有两个相异零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=-x3+ax2-4.
(Ⅰ)若f(x)在x=2处取得极值,且关于x的方程f(x)=m在[-1,1]上恰有两个不同的实数根,求实数m的取值范围;
(Ⅱ)若存在x0∈(0,+∞),使得不等式f(x0)>0成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知sinα-2cosα=0.
(I)求tan(α+$\frac{π}{4}$)的值.
(Ⅱ)求$\frac{sin2αcosα-sinα}{sinα}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知{an}为等差数列,a1=-12,a5=2a6
(I)求数列{an}的通项公式以及前n项和Sn
(Ⅱ)求使得Sn>14的最小正整数n的值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.某共享单车公司欲在某社区投放一批共享单车,单车总数不超过100辆,现有A,B两种型号的单车:其中A型为运动型,成本为500元/车,骑行半小时需花费0.5元;B型车为轻便型,成本为3000元/车,骑行半小时需花费1元.若公司投入成本资金不能超过10万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时(不足半小时按半小时计算),则在该社区单车公司可获得的总收入最多为120元.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知数列{an}的前n项和为Sn,且an+Sn=1,n∈N*,则a1=$\frac{1}{2}$;an=$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.当x>0时,不等式x+$\frac{1}{x}$≥a恒成立,则实数a的取值范围是(-∞,2].

查看答案和解析>>

科目: 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的s值为(  )
A.-$\frac{1}{2}$B.$\frac{2}{3}$C.2D.3

查看答案和解析>>

同步练习册答案