相关习题
 0  241217  241225  241231  241235  241241  241243  241247  241253  241255  241261  241267  241271  241273  241277  241283  241285  241291  241295  241297  241301  241303  241307  241309  241311  241312  241313  241315  241316  241317  241319  241321  241325  241327  241331  241333  241337  241343  241345  241351  241355  241357  241361  241367  241373  241375  241381  241385  241387  241393  241397  241403  241411  266669 

科目: 来源: 题型:选择题

20.已知$tanα=\frac{1}{2}$,则$\frac{sinαcosα}{{{{sin}^2}α-co{s^2}α}}$的值是(  )
A.$-\frac{4}{3}$B.3C.$\frac{4}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知定义在R上的函数f(x)满足f(x)=-f(x+$\frac{3}{2}$),且f(1)=2,f(2)=3,则f (2017)=2.

查看答案和解析>>

科目: 来源: 题型:选择题

18.设实数x,y满足约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,则目标函数z=y-$\frac{1}{2}x$的最小值为(  )
A.-1B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

17.两直线3x+y-1=0与6x+my+1=0平行,则它们之间的距离为(  )
A.2B.$\frac{{3\sqrt{10}}}{10}$C.$\frac{{2\sqrt{13}}}{13}$D.$\frac{{3\sqrt{10}}}{20}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.函数$y=-2sin(\frac{1}{2}x+\frac{π}{4})$的周期,振幅,初相分别是(  )
A.$\frac{π}{4}$,2,$\frac{π}{4}$B.4π,-2,$-\frac{π}{4}$C.4π,2,$\frac{π}{4}$D.2π,2,$\frac{π}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在平面直角坐标系xoy中,已知椭圆$Γ:\frac{x^2}{4}+\frac{y^2}{b^2}=1({0<b<2})$和圆O:x2+y2=4,A为椭圆Γ的左顶点,B,C分别为椭圆Γ,圆O在轴上方的点,且$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{AC}$..
(1)若$|{\overrightarrow{AC}}|=\frac{{8\sqrt{5}}}{5}$,求b的值;
(2)求椭圆Γ的离心率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{3}}{2}$,过焦点垂直长轴的弦长为1.
(I)求椭圆E的方程;
(II)椭圆E的右焦点为F,⊙O:x2+y2=1的切线MN与椭圆E交于M,N两点(均在y轴的右侧),求△MNF内切圆的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.设正数x、y满足x>y,x+2y=3,则$\frac{1}{x-y}$+$\frac{9}{x+5y}$的最小值为$\frac{8}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=(x-1)lnx+1.
(1)求f′(e)(e为自然对数的底数);
(2)求曲线f(x)在点(e,f(e))处的切线方程;
(3)若函数g(x)=$\frac{f(x)}{x}$,证明:g(x)>$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.画出下列函数在长度为一个周期的闭区间上的简图:
(1)y=4sin$\frac{1}{3}x$;
(2)y=$\frac{1}{2}cos3x$;
(3)y=3sin(2x-$\frac{π}{4}$);
(4)y=$\frac{5}{2}$cos($\frac{1}{2}x$+$\frac{π}{6}$)

查看答案和解析>>

同步练习册答案