相关习题
 0  241254  241262  241268  241272  241278  241280  241284  241290  241292  241298  241304  241308  241310  241314  241320  241322  241328  241332  241334  241338  241340  241344  241346  241348  241349  241350  241352  241353  241354  241356  241358  241362  241364  241368  241370  241374  241380  241382  241388  241392  241394  241398  241404  241410  241412  241418  241422  241424  241430  241434  241440  241448  266669 

科目: 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{2}{x^2}-x+alnx,a∈R$.
(Ⅰ)若a=-2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当$0<a<\frac{2}{9}$,函数f(x)的两个极值点为x1,x2,且x1<x2,求证:$\frac{{f({x_1})}}{x_2}>-\frac{5}{12}-\frac{1}{3}ln3$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则f($\frac{π}{3}$)=0.

查看答案和解析>>

科目: 来源: 题型:选择题

8.若方程f(x)-x=0有且只有一个根,则函数f(x)不可能是(  )
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=($\frac{1}{2}$)xD.f(x)=x2+$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)若对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c恒成立,求实数c的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.过点(1,0)且与直线y=$\frac{1}{2}$x-1平行的直线方程是(  )
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

查看答案和解析>>

科目: 来源: 题型:填空题

5.给出下列命题:
①存在实数x,使sinx+cosx=$\frac{3}{2}$;      
②函数y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函数;
③若α,β是第一象限角,且α>β,则cosα<cosβ;
④函数y=sin2x的图象向左平移$\frac{π}{4}$个单位,得到函数y=sin(2x+$\frac{π}{4}$)的图象.
其中结论正确的序号是②.(把正确的序号都填上)

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)设函数F(x)=f(x)-g(x),若函数F(x)的零点有且只有一个,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=sin2x-$\sqrt{3}$sinxcosx+$\frac{1}{2}$,g(x)=mcos(x+$\frac{π}{3}$)-m+2.
(Ⅰ)若$x∈[{0,\frac{π}{2}}]$,求函数y=f(x)的值域;
(Ⅱ)若对任意的${x_1}∈[{0,\frac{π}{2}}]$,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点,已知A、B的纵坐标分别为$\frac{{\sqrt{10}}}{10}$,$\frac{{\sqrt{2}}}{10}$.
(Ⅰ)求tan(α+β)的值;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,
AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)若 B1C1⊥平面CEC1,求二面角B1-CE-C1的余弦值;
(Ⅱ)在线段C1E上是否存在一点M,使得直线AM与平面ADD1A1所成角的正弦值为$\frac{{\sqrt{2}}}{6}$,若存在,求EM:MC1的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案