相关习题
 0  241279  241287  241293  241297  241303  241305  241309  241315  241317  241323  241329  241333  241335  241339  241345  241347  241353  241357  241359  241363  241365  241369  241371  241373  241374  241375  241377  241378  241379  241381  241383  241387  241389  241393  241395  241399  241405  241407  241413  241417  241419  241423  241429  241435  241437  241443  241447  241449  241455  241459  241465  241473  266669 

科目: 来源: 题型:解答题

20.设函数f(x)=|x+2|-|x-2|.
(1)解不等式f(x)≥2;
(2)当x∈R,0<y<1时,证明:|x+2|-|x-2|≤$\frac{1}{y}$+$\frac{1}{1-y}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系,已知直线l:$\left\{\begin{array}{l}{x=t}\\{y=1-\sqrt{3}t}\end{array}\right.$(t为参数)曲线C的极坐标方程为4ρcos2θ-sinθ=0.
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点,P(0,1),求||PA|-|PB||.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知偶函数f(x)在区间[0,+∞)上为增函数,且f(-1)=$\frac{1}{2}$,若实数a满足f(loga3)+f(${log_a}\frac{1}{3}$)≤1,则实数a的取值范围为(  )
A.0<a≤$\frac{1}{3}$B.a≥3,或0<a<$\frac{1}{4}$C.a≥3,或0<a≤$\frac{1}{3}$D.a≥3

查看答案和解析>>

科目: 来源: 题型:选择题

17.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为(  )
A.$\frac{6}{25}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,若A=$\frac{π}{3}$,b=2,△ABC的面积为$\frac{3\sqrt{3}}{2}$.
(1)求a和c的值;
(2)求sin(2B-$\frac{π}{6}$)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.在5道题中有3道理科题和2道文科题,如果一次性抽取2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a,b,m均为正整数,若a和b
除以m所得的余数相同,则称a和b对模m同余,记为a≡b(mod m).如9和21除以6所得的余数都是3,则记为9≡21(mod 6),若a=${C}_{20}^{0}$+${C}_{20}^{1}$•3+${C}_{20}^{2}$•32+…+${C}_{20}^{20}$•320,a≡b(mod 5),则b的值可以是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知命题p:?x∈R,x2+x-6≤0,则命题¬p是(  )
A.?x∈R,x2+x-6>0B.?x∈R,x2+x-6>0C.?x∈R,x2+x-6>0D.?x∈R,x2+x-6<0

查看答案和解析>>

科目: 来源: 题型:解答题

11.一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率.
(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率.
(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X的分布列.
(Ⅳ)若从袋中每次随机抽取1个球,有放回的抽取3次,记球的最大编号为X,求随机变量X的分布列.

查看答案和解析>>

同步练习册答案