相关习题
 0  241318  241326  241332  241336  241342  241344  241348  241354  241356  241362  241368  241372  241374  241378  241384  241386  241392  241396  241398  241402  241404  241408  241410  241412  241413  241414  241416  241417  241418  241420  241422  241426  241428  241432  241434  241438  241444  241446  241452  241456  241458  241462  241468  241474  241476  241482  241486  241488  241494  241498  241504  241512  266669 

科目: 来源: 题型:填空题

10.(1+$\frac{1}{{x}^{2}}$)(1+x)6展开式中x2的系数为30.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知集合A={x|x2-1≥0},B={x|x(x-2)<0},则A∩(∁RB)=(  )
A.(2,+∞)B.(-∞,-1]∪[2,+∞)C.(-∞,-1]∪(2,+∞)D.[-1,0]∪[2,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

8.对分类变量X 与Y 的随机变量K2的观测值K,说法正确的是(  )
A.k 越大,“X 与Y 有关系”可信程度越小
B.k 越小,“X 与Y 有关系”可信程度越小
C.k 越接近于0,“X 与Y 无关”程度越小
D.k 越大,“X 与Y 无关”程度越大

查看答案和解析>>

科目: 来源: 题型:解答题

7.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30]20.05
合计M1
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数;
(3)根据服务次数的频率分布直方图,求服务次数的中位数的估计值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.在2017年某校的零起点小语种保送面试中,我校共获得了5个推荐名额,其中俄语2名,日语2名,西班牙语1名,并且日语和俄语都要求必须有男生参加考试.学校通过选拔定下3男2女五位英语生作为推荐对象,则不同的推荐方案共有(  )
A.48种B.36种C.24种D.12种

查看答案和解析>>

科目: 来源: 题型:解答题

5.(1)已知x>0,y>0且x+y=1,求$\frac{8}{x}$$+\frac{2}{y}$的最小值;
(2)已知0<x<2,求y=$\sqrt{3x(8-3x)}$的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知x与y之间的几组数据如下表:
x  3 4 5  6
y 2.5 3 4 4.5
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回归直线方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.抛物线的准线方程是x=-$\frac{1}{2}$,则其标准方程是(  )
A.y2=2xB.x2=-2yC.y2=-xD.x2=-y

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8,其中m为参数.
(1)若m=2,写出函数g(x)的单调区间(无需证明);
(2)若方程f(x)=2|m|在x∈[-2,+∞)上有唯一解,求实数m的取值范围;
(3)当m<4时,若对任意x1∈[4,+∞),存在x2∈(-∞,4],使得f(x2)=g(x1)成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.一中科普兴趣小组通过查阅生物科普资料统计某花卉种子的发芽率与昼夜温差之间的关系,他们分别从近十年3月份的数据中随机抽取了5天记录昼夜温差及每天30颗种子的发芽数,并列表如下:
日期2012-3-12013-3-52008-3-152009-3-202016-3-29
温差x101113129
发芽数y1516171413
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=832,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=615,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$$-b\overline{x}$
(1)请根据以上5组数据,求出y关于x的线性回归方程;
(2)假如现在要对(1)问中的线性回归方程的可靠性进行研究:如果由线性回归方程得到的估计数据与另外抽取的两组数据的误差的平方和不超过2,即认为此线性回归方程可靠的.如果另外随机抽取的两组数据为:温差8℃,发芽数为12和温差14℃,发芽数为18.请由此判断(1)中的线性回归方程是否可靠;(3)如果将以上5天数据中30颗种子发芽数超过15颗(包含15颗)的天数的频率作为整个2017年3月份的30颗种子发芽数超过15颗(包含15颗)的天数的概率,求从2017年3月份的1号到31号的31天中任选5天,记种子发芽数超过15颗(包含15颗)的天数为随机变量X,求X的期望和方差.

查看答案和解析>>

同步练习册答案