相关习题
 0  241345  241353  241359  241363  241369  241371  241375  241381  241383  241389  241395  241399  241401  241405  241411  241413  241419  241423  241425  241429  241431  241435  241437  241439  241440  241441  241443  241444  241445  241447  241449  241453  241455  241459  241461  241465  241471  241473  241479  241483  241485  241489  241495  241501  241503  241509  241513  241515  241521  241525  241531  241539  266669 

科目: 来源: 题型:解答题

2.设函数f(x)=xex-ax(a∈R,a为常数),e为自然对数的底数.
(1)若函数f(x)的任意一条切线都不与y轴垂直,求a的取值范围;
(2)当a=2时,求使得f(x)+k>0成立的最小正整数k.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜边$AB=\sqrt{2}$,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当$λ=\frac{1}{3}$时,记四面体C1-BEC的体积为V1,四面体D-BEC的体积为V2,求V1:V2

查看答案和解析>>

科目: 来源: 题型:解答题

20.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
x(个)23456
y(百万元)2.5344.56
(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程$y=\hat bx+a$;
(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
(参考公式:$y=\hat bx+a$,其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目: 来源: 题型:解答题

19.数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1,a2,a5成等比数列.
(Ⅰ)证明S1,S3,S9成等比数列;
(Ⅱ)设a1=1,求${a_2}+{a_4}+{a_8}+…+{a_{2^n}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在梯形ABCD中,AB∥CD,$∠BCD=\frac{2π}{3}$,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.
(1)求证:EF⊥平面BCF;
(2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.在△ABC中,$∠A=\frac{π}{3}$,O为平面内一点,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|$,M为劣弧$\widehat{BC}$上一动点,且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$,
则p+q的最大值为2.

查看答案和解析>>

科目: 来源: 题型:选择题

16.若实数a、b、c>0,且${a^2}+ab+bc+ca=6-2\sqrt{5}$,则2a+b+c的最小值为(  )
A.$\sqrt{5}-1$B.$\sqrt{5}+1$C.$2\sqrt{5}+2$D.$2\sqrt{5}-2$

查看答案和解析>>

科目: 来源: 题型:选择题

15.设非负实数x和y满足$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-4≤0\\ x+4y-4≤0\end{array}\right.$,则z=3x+y的最大值为(  )
A.2B.$\frac{14}{3}$C.6D.12

查看答案和解析>>

科目: 来源: 题型:填空题

14.若正△ABC的边长为a,则△ABC的平面直观图△A′B′C′的面积为=$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目: 来源: 题型:选择题

13.设数列{an}满足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超过x的最大整数,则$[\frac{2017}{{a}_{1}}+\frac{2017}{{a}_{2}}+…+\frac{2017}{{a}_{2017}}]$=(  )
A.2015B.2016C.2017D.2018

查看答案和解析>>

同步练习册答案