相关习题
 0  241370  241378  241384  241388  241394  241396  241400  241406  241408  241414  241420  241424  241426  241430  241436  241438  241444  241448  241450  241454  241456  241460  241462  241464  241465  241466  241468  241469  241470  241472  241474  241478  241480  241484  241486  241490  241496  241498  241504  241508  241510  241514  241520  241526  241528  241534  241538  241540  241546  241550  241556  241564  266669 

科目: 来源: 题型:选择题

19.如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是$\frac{{2\sqrt{3}}}{3}$,则其底面周长为(  )
A.$2({\sqrt{3}+1})$B.$2({\sqrt{5}+1})$C.$2({\sqrt{2}+2})$D.$\sqrt{5}$+3

查看答案和解析>>

科目: 来源: 题型:解答题

18.设函数f(x)=$\frac{lnx+1}{x}$.
(1)求曲线y=f(x)在点(e,f(e))处的切线方程;
(2)当x≥1时,不等式f(x)-$\frac{1}{x}$≥$\frac{a({x}^{2}-1)}{x}$恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积.若三角形的三边长为a,b,c,其面积S=$\sqrt{p(p-a)(p-b)(p-c)}$,这里p=$\frac{1}{2}$(a+b+c),已知在△ABC中,BC=6,AB=2AC,其面积取最大值时sinA=$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知正三角形的外接圆的圆心位于该正三角形的高的三等分点,且外接圆半径的长等于高的三分之二,由此类比,棱长为a的正四面体的外接球的半径的长为$\frac{\sqrt{6}}{4}$a.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n,
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nbn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

14.求数列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…,$\frac{1}{(2n-1)(2n+1)}$,…的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知在数列{an}中,a1=2,a2=4,且an+1=3an-2an-1(n≥2).
(1)证明:数列{an+1-an}为等比数列,并求{an}的通项公式;
(2)令bn=$\frac{2n-1}{{a}_{n}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$若函数f(x)的图象在点A,B处的切线重合,则实数a的取值范围是(  )
A.(2,+∞)B.(-∞,$\frac{1}{4}$)C.(-2,$\frac{1}{4}$)D.(-∞,-2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

11.一个几何体的三视图如图所示,则该几何体的表面积为3π+$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.某校高三月考过后,化学组老师从高三年级1000名学生中抽出了20人的化学成绩(满分:100分),作为样本进行分析,将成绩按如下方式分成五组:第一组[50,60),第二组:[60,70),…,第五组[90,100).如图是按上述分组方法得到的频率分布直方图.
(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此求这20位学生化学成绩的平均数,中位数,众数;
(2)估计该校高三年级这次月考中化学成绩超过80分的人数;
(3)样本中,从化学成绩在80分以上(包括80分)的学生中人选2人,求至少有1人成绩在90-100分数段的概率.

查看答案和解析>>

同步练习册答案