相关习题
 0  241417  241425  241431  241435  241441  241443  241447  241453  241455  241461  241467  241471  241473  241477  241483  241485  241491  241495  241497  241501  241503  241507  241509  241511  241512  241513  241515  241516  241517  241519  241521  241525  241527  241531  241533  241537  241543  241545  241551  241555  241557  241561  241567  241573  241575  241581  241585  241587  241593  241597  241603  241611  266669 

科目: 来源: 题型:解答题

2.如图所示,两个非共线向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为θ,M、N分别为OA与OB的中点,点C在直线MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则x2+y2的最小值为$\frac{1}{8}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系xoy中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)若直线l的参数方程中t=$\sqrt{2}$的时,得到M点,求M的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若点P(1,2),l和曲线C交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在极坐标系中,曲线C的方程为$ρ=4cosθ+2sinθ-\frac{3}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

19.根据“2015年国民经济和社会发展统计公报”中公布的数据,从2011 年到2015 年,我国的第三产业在GDP中的比重如下:
年份20112012201320142015
年份代码x12345
第三产业比重(%)44.345.546.948.150.5
(Ⅰ)在所给坐标系中作出数据对应的散点图;
(Ⅱ)建立第三产业在GDP中的比重y关于年份代码x的回归方程;
(Ⅲ)按照当前的变化趋势,预测2017 年我国第三产业在GDP中的比重.
附注:回归直线方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^5{{x_i}{y_i}}=720.9$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知曲线C:$\left\{\begin{array}{l}x=3cosθ\\ y=2sinθ\end{array}\right.$,直线l:ρ(cosθ-2sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程,并写出曲线C的普通方程;
(2)设点P在曲线C上,求P点到直线l距离的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知集合M={x∈N|x2-3x<4},N={x||x|<2},则M∩N=(  )
A.{x|-2≤x<1}B.{x|-2<x<1}C.{0}D.{0,1}

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知斜率为2的直线的方程为5ax-5y-a+3=0,此直线在y轴上的截距为$\frac{1}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.要使圆x2+y2+Dx+Ey+F=0与x轴的两个交点分别位于原点的两侧,则有(  )
A.D2+E2-4F>0,且F<0B.D<0,F>0
C.D≠0,F≠0D.F<0

查看答案和解析>>

科目: 来源: 题型:填空题

14.设F1,F2分别为椭圆${C_1}:\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$(a1>b1>0)与双曲线${C_2}:\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$(a2>b2>0)的公共焦点,它们在第一象限内交于点M,$∠{F_1}M{F_2}={90^0}$,若椭圆的离心率${e_1}∈[\frac{3}{4},\frac{{2\sqrt{2}}}{3}]$,则双曲线C2的离心率e2的取值范围为$[\frac{{2\sqrt{14}}}{7},\sqrt{2})$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.命题p:|x-c|<1,命题$q:\frac{4}{7-x}>1$;若p是q的充分不必要条件,则实数c的取值范围为[4,6].

查看答案和解析>>

同步练习册答案