相关习题
 0  241434  241442  241448  241452  241458  241460  241464  241470  241472  241478  241484  241488  241490  241494  241500  241502  241508  241512  241514  241518  241520  241524  241526  241528  241529  241530  241532  241533  241534  241536  241538  241542  241544  241548  241550  241554  241560  241562  241568  241572  241574  241578  241584  241590  241592  241598  241602  241604  241610  241614  241620  241628  266669 

科目: 来源: 题型:填空题

12.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-2,1})$,则$\overrightarrow a$与$\overrightarrow b$的夹角为90°.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知O为坐标原点,设F1,F2分别是双曲线x2-y2=1的左、右焦点,点P为双曲线左支上任一点,自点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知矩形ABCD的顶点都在球心为O,半径为R的球面上,$AB=6,BC=2\sqrt{3}$,且四棱锥O-ABCD的体积为$8\sqrt{3}$,则R等于(  )
A.4B.$2\sqrt{3}$C.$\frac{{4\sqrt{7}}}{9}$D.$\sqrt{13}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为(  )
A.4立方丈B.5立方丈C.6立方丈D.12立方丈

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=ex,g(x)=ln(x+a)+b.
(Ⅰ)若函数f(x)与g(x)的图象在点(0,1)处有相同的切线,求a,b的值;
(Ⅱ)当b=0时,f(x)-g(x)>0恒成立,求整数a的最大值;
(Ⅲ)证明:ln2+(ln3-ln2)2+(ln4-ln3)3$+…+{[ln(n+1)-lnn]^n}<\frac{e}{e-1}$.

查看答案和解析>>

科目: 来源: 题型:选择题

7.若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线$y=-\sqrt{3}x$上,则角α的取值集合是(  )
A.$\{α|α=2kπ-\frac{π}{3},k∈Z\}$B.$\{α|α=2kπ+\frac{2π}{3},k∈Z\}$C.$\{α|α=kπ-\frac{2π}{3},k∈Z\}$D.$\{α|α=kπ-\frac{π}{3},k∈Z\}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.设r是方程f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线l,l的方程为y=f(x0)+f'(x0)(x-x0),求出l与x轴交点的横坐标x1=x0-$\frac{{f({x_0})}}{{f'({x_0})}}$,称x1为r的一次近似值.过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1-$\frac{f({x}_{1})}{f′({x}_{1})}$,称x2为r的二次近似值.重复
以上过程,得r的近似值序列,其中,xn+1=xn-$\frac{{f({x_n})}}{{f'({x_n})}}$,称为r的n+1次近似值,上式称为牛顿迭代公式.已知$\sqrt{6}$是方程x2-6=0的一个根,若取x0=2作为r的初始近似值,则在保留四位小数的前提下,$\sqrt{6}$≈(  )
A.2.4494B.2.4495C.2.4496D.2.4497

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知圆M:x2+(y-4)2=1,直线l:2x-y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点分别为A,B.
(1)若∠APB=60°,求P点的坐标;
(2)若点P的坐标为(1,2),过点P作一条直线与圆M交于C,D两点,当|CD|=$\sqrt{2}$时,求直线CD的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

4.若关于x的不等式|a-1|≥|2x+1|+|2x-3|的解集非空,则实数a的取值范围为(  )
A.(-∞,-3]∪[5,+∞)B.(-∞,-3)∪(5,+∞)C.[-3,5]D.(-3,5)

查看答案和解析>>

科目: 来源: 题型:选择题

3.平面直角坐标系中,A,B分别为x轴和y轴上的动点,若以AB为直径的圆C与直线x+$\sqrt{3}$y-4$\sqrt{3}$=0相切,则圆C面积的最小值为(  )
A.$\frac{3}{4}$πB.πC.D.

查看答案和解析>>

同步练习册答案