相关习题
 0  24187  24195  24201  24205  24211  24213  24217  24223  24225  24231  24237  24241  24243  24247  24253  24255  24261  24265  24267  24271  24273  24277  24279  24281  24282  24283  24285  24286  24287  24289  24291  24295  24297  24301  24303  24307  24313  24315  24321  24325  24327  24331  24337  24343  24345  24351  24355  24357  24363  24367  24373  24381  266669 

科目: 来源:山西省月考题 题型:解答题

设椭圆C1的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2﹣1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目: 来源:新疆维吾尔自治区期末题 题型:解答题

已知中心在原点,焦点在x轴上的椭圆,离心率,且经过抛物线x2=4y的焦点.
(1)求椭圆的标准方程;
(2)若过点B(0,﹣2)的直线l(斜率不等于零)与椭圆交于不同的两点E,F(E在B,F之间),△OBE与△OBF面积之比为λ,求λ的取值范围.

查看答案和解析>>

科目: 来源:江苏省期末题 题型:解答题

、A2与B分别是椭圆E:的左右顶点与上定点,直线A2B与
圆C:x2+y2=1相切.
(1)求证:
(2)P是椭圆E上异于、A2 的一点,直线P、PA2的斜率之积为﹣,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且,试判断直线l与圆C的位置关系,并说明理由.

查看答案和解析>>

科目: 来源:山东省期末题 题型:解答题

已知椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,).
(1)求椭圆C的方程;
(2)直线l:3x﹣3y﹣1=0交椭圆C与A、B两点,若T(0,1)求证:

查看答案和解析>>

科目: 来源:山东省期末题 题型:解答题

已知椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,).
(1)求椭圆C的方程;
(2)直线l:3x﹣3y﹣1=0交椭圆C与A、B两点,若T(0,1)求证:

查看答案和解析>>

科目: 来源:山东省期末题 题型:解答题

设椭圆E:的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A、B两点,已知A().
(1)求椭圆E的方程;
(2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.

查看答案和解析>>

科目: 来源:湖南省月考题 题型:解答题

已知椭圆方程为,长轴两端点为A、B,短轴上端点为C.
(1)若椭圆焦点坐标为,点M在椭圆上运动,当△ABM的最大面积为3时,求其椭圆方程;
(2)对于(1)中的椭圆方程,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),试求k满足的关系等式;
(3)过C任作垂直于,点P、Q在椭圆上,试问在y轴上是否存在一点T使得直线TP的斜率与TQ的斜率之积为定值,如果存在,找出点T的坐标和定值,如果不存在,说明理由.

查看答案和解析>>

科目: 来源:江苏省月考题 题型:解答题

已知椭圆的离心率为,以右焦点为圆心,椭圆长半轴为半径的圆与直线相切.
(1)求椭圆的方程;
(2)E、F是椭圆C上的两个动点,为定点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目: 来源:河北省期末题 题型:解答题

过椭圆的左焦点F作斜率为k(k≠0)的直线交椭圆于A,B两点,使得AB的中点M在直线x+2y=0上.
(1)求k的值;
(2)设C(﹣2,0),求tan∠ACB.

查看答案和解析>>

科目: 来源:河南省期末题 题型:解答题

已知椭圆E的长轴的一个端点是抛物线
(I)求椭圆E的方程;
(II)过点C(﹣1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使恒为常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案