相关习题
 0  24190  24198  24204  24208  24214  24216  24220  24226  24228  24234  24240  24244  24246  24250  24256  24258  24264  24268  24270  24274  24276  24280  24282  24284  24285  24286  24288  24289  24290  24292  24294  24298  24300  24304  24306  24310  24316  24318  24324  24328  24330  24334  24340  24346  24348  24354  24358  24360  24366  24370  24376  24384  266669 

科目: 来源:高考真题 题型:解答题

已知椭圆,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率。
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,,求直线AB的方程。

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知椭圆的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆的右准线)于P,Q两点.
(1)若当θ=30°时有,求椭圆的离心率;
(2)若离心率e=,求证:为定值.

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知中心在坐标原点,焦点在坐标轴上的椭圆G与x轴交于A、C两点,与y轴交于B、D两点,且A点的坐标为(﹣2,0),四边形ABCD的面积为4.
(1)求椭圆G的方程;
(2)过x轴上一点M(1,0)作一条不垂直于y轴的直线l,交椭圆G于E、F点,是否存在直线l,使得△AEF的面积为,说明理由

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知椭圆方程为(a>b>0),长轴两端点A、B,短轴上端顶点为M,点O为坐标原点,F为椭圆的右焦点,且=1,|OF|=1.
(1)求椭圆方程;
(2)直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知焦点在x轴上的椭圆C过点(0,1),且离心率为,Q为椭圆C的左顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知过点的直线l与椭圆C交于A,B两点.
(ⅰ)若直线l垂直于x轴,求∠AQB的大小;
(ⅱ)若直线l与x轴不垂直,是否存在直线l使得△QAB为等腰三角形?如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

已知椭圆,点P()在椭圆上。
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形。
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)。
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G,求证:A,G,N三点共线。

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知椭圆的两个焦点分别是,离心率
(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为,求直线l的倾斜角的范围.

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=,过F1的直线交椭圆于A、B两点,且△ABF2的周长为8。
(1)求椭圆E的方程。
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q,试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案