相关习题
 0  245007  245015  245021  245025  245031  245033  245037  245043  245045  245051  245057  245061  245063  245067  245073  245075  245081  245085  245087  245091  245093  245097  245099  245101  245102  245103  245105  245106  245107  245109  245111  245115  245117  245121  245123  245127  245133  245135  245141  245145  245147  245151  245157  245163  245165  245171  245175  245177  245183  245187  245193  245201  266669 

科目: 来源: 题型:填空题

19.${∫}_{0}^{π}$(x+cosx)dx=.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图所示,在平面直角坐标系xOy中,点B,C分别在x轴和y轴非负半轴上,点A在第一象限,且∠BAC=90°,AB=AC=4,那么O,A两点间距离的(  )
A.最大值是$4\sqrt{2}$,最小值是4B.最大值是8,最小值是4
C.最大值是$4\sqrt{2}$,最小值是2D.最大值是8,最小值是2

查看答案和解析>>

科目: 来源: 题型:选择题

17.将函数$y=cos(\frac{1}{2}x-\frac{π}{6})$图象向左平移$\frac{π}{3}$个长度单位,再把所得图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得图象的函数解析式是(  )
A.$y=cos(x+\frac{π}{6})$B.$y=cos\frac{1}{4}x$C.y=cosxD.$y=cos(\frac{1}{4}x-\frac{π}{3})$

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程是$y=\sqrt{3}x$,它的一个焦点坐标为(2,0),则双曲线的方程为(  )
A.$\frac{x^2}{2}-\frac{y^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-{y^2}=1$

查看答案和解析>>

科目: 来源: 题型:选择题

15.在等比数列{an}中,a3+a4=4,a2=2,则公比q等于(  )
A.-2B.1或-2C.1D.1或2

查看答案和解析>>

科目: 来源: 题型:选择题

14.在复平面内,复数$\frac{7+i}{3+4i}$对应的点的坐标为(  )
A.(1,-1)B.(-1,1)C.$(\frac{17}{25},-1)$D.$(\frac{17}{5},-1)$

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=lnx-ax+1,a是常数,a∈R.
(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线l的方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)证明:函数f(x)(x≠1)的图象在直线l的下方.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,四棱锥E-ABCD中,侧面EAB⊥底面ABCD,底面ABCD是直角梯形,
AD∥BC,AB=BC=2AD,∠DAB=90°,△EAB是正三角形,F为EC的中点.
(Ⅰ)求证:DF∥平面EAB;
(Ⅱ)求证:DF⊥平面EBC.

查看答案和解析>>

科目: 来源: 题型:解答题

11.教育资源的不均衡是促进“择校热”的主要因素之一,“择校热”也是教育行政部门一直着力解决的问题.某社会调查机构为了调查学生家长对解决“择校热”的满意程度,从A,B,C,D四个不同区域内分别选择一部分学生家长作调查,每个区域选出的人数如条形图所示.为了了解学生家长的满意程度,对每位家长都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意一般不满意
A区域50%25%25%
B区域80%020%
C区域50%50%0
D区域40%20%40%
(Ⅰ)若家长甲来自A区域,求家长甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的家长中再选出2人进行面谈,求这2人中至少有一人来自D区域的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的图象的一部分如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当$x∈[-6,-\frac{1}{3}]$时,求函数y=f(x)的最大值与最小值及相应的x的值.

查看答案和解析>>

同步练习册答案