相关习题
 0  245081  245089  245095  245099  245105  245107  245111  245117  245119  245125  245131  245135  245137  245141  245147  245149  245155  245159  245161  245165  245167  245171  245173  245175  245176  245177  245179  245180  245181  245183  245185  245189  245191  245195  245197  245201  245207  245209  245215  245219  245221  245225  245231  245237  245239  245245  245249  245251  245257  245261  245267  245275  266669 

科目: 来源: 题型:选择题

10.在平面直角坐标系中,若P(x,y)满足$\left\{\begin{array}{l}{x-4y+4≤0}\\{2x+y-10≤0}\\{5x-2y+2≥0}\end{array}\right.$,则当xy取得最大值时,点P的坐标为(  )
A.(4,2)B.(2,2)C.(2,6)D.($\frac{5}{2}$,5)

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC中点.AB=BC,AC=2,AA1=$\sqrt{2}$.
(Ⅰ)求证:B1C∥平面A1BM;
(Ⅱ)求证:AC1⊥平面A1BM;
(Ⅲ)在棱BB1的上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时$\frac{BN}{{B{B_1}}}$的值;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如果数列A:a1,a2,…,am(m∈Z,且m≥3),满足:①ai∈Z,$-\frac{m}{2}≤{a_i}≤\frac{m}{2}$(i=1,2,…,m);②a1+a2+…+am=1,那么称数列A为“Ω”数列.
(Ⅰ)已知数列M:-2,1,3,-1;数列N:0,1,0,-1,1.试判断数列M,N是否为“Ω”数列;
(Ⅱ)是否存在一个等差数列是“Ω”数列?请证明你的结论;
(Ⅲ)如果数列A是“Ω”数列,求证:数列A中必定存在若干项之和为0.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(Ⅰ)求证:CE∥平面PAD;
(Ⅱ)求PD与平面PCE所成角的正弦值;
(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求$\frac{AF}{AB}$的值;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,如果函数g(x)=f(x)-m(m∈R) 恰有4个零点,则m的取值范围是(-1,0).

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知关于x函数g(x)=$\frac{2}{x}$-alnx(a∈R),f(x)=x2+g(x)
(Ⅰ)试求函数g(x)的单调区间;
(Ⅱ)若f(x)在区间(0,1)内有极值,试求a的取值范围;
(Ⅲ)a>0时,若f(x)有唯一的零点x0,试求[x0].
(注:[x]为取整函数,表示不超过x的最大整数,如[0.3]=0,[2.6]=2[-1.4]=-2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

查看答案和解析>>

科目: 来源: 题型:选择题

4.在椭圆$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为(  )
A.9x-16y+7=0B.16x+9y-25=0C.9x+16y-25=0D.16x-9y-7=0

查看答案和解析>>

科目: 来源: 题型:选择题

3.某餐厅的原料费支出x与销售额y(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y与x的线性回归方程为$\widehat{y}$=8.5x+7.5,则表中的m的值为(  )
x24568
y2535m5575
A.50B.55C.60D.65

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆W:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,Q是椭圆上的任意一点,且点Q到椭圆左右焦点F1,F2的距离和为4.
(Ⅰ)求椭圆W的标准方程;
(Ⅱ)经过点(0,1)且互相垂直的直线l1、l2分别与椭圆交于A、B和C、D两点(A、B、C、D都不与椭圆的顶点重合),E、F分别是线段AB、CD的中点,O为坐标原点,若kOE、kOF分别是直线OE、OF的斜率,求证:kOE•kOF为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知f(x)=lnx-ax2-bx.
(Ⅰ)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)设f(x)的零点为x1,x2且x1<x2,x1+x2=2x0,求证:f′(x0)<0.

查看答案和解析>>

同步练习册答案