相关习题
 0  245132  245140  245146  245150  245156  245158  245162  245168  245170  245176  245182  245186  245188  245192  245198  245200  245206  245210  245212  245216  245218  245222  245224  245226  245227  245228  245230  245231  245232  245234  245236  245240  245242  245246  245248  245252  245258  245260  245266  245270  245272  245276  245282  245288  245290  245296  245300  245302  245308  245312  245318  245326  266669 

科目: 来源: 题型:选择题

15.已知数列{an}满足$\frac{ln{a}_{1}}{2}$•$\frac{ln{a}_{2}}{5}$•$\frac{ln{a}_{3}}{8}$•…•$\frac{ln{a}_{n}}{3n-1}$=$\frac{3n+2}{2}$(n∈N*),则a10=(  )
A.e26B.e29C.e32D.e35

查看答案和解析>>

科目: 来源: 题型:解答题

14.下表是某地一年中10天测量得白昼时间统计表(时间近似0.1小时,一年按365天计).
日期  1月1日2月28日  3月21日4月27日 5月6日 6月21日 8月13日 9月20日  10月25日12月21日 
 日期位置序号x 159  80 117126 172 225 268 298 355 
 白昼时间y(小时) 5.6 10.212.4  16.417.3  19.4 16.4 12.48.5 5.4 
(1)以日期在365一天中得位置序号x为横坐标,白昼时间y为纵坐标,在给定的坐标中,试选用一个形如y=Asin(ωx+φ)+t的函数来近似描述一年中,白昼时间y与日期位置序号x之间的函数关系;
(2)用(1)中的函数模型估计该地一年中大约有多少天白昼时间大于15.9小时.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在四棱锥P-ABCD中,AB=AD=4,CD=BC=4,PA=4,AB⊥BC,PA⊥CD,平面PAB⊥平面ABCD.
(1)证明:PC⊥BD;
(2)求直线PD与平面PBC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知平面α∥平面β,直线l?α,α与β之间的距离为d,有下列四个命题:
①β内有且仅有一条直线与l的距离为d;
②β内所有的直线与l的距离都等于d;
③β内有无数条直线与l的距离为d;
④β内所有直线与α的距离都等于d.
其中真命题是(  )
A.B.C.①与④D.③与④

查看答案和解析>>

科目: 来源: 题型:填空题

11.设函数f(x)=-$\frac{1}{3}{x^3}+2a{x^2}-3{a^2}$x+1,0<a<1.
(1)求函数f(x)的极大值;
(2)若x∈[1-a,1+a]时,恒有-a≤f′(x)≤a成立(其中f′(x)是函数f(x)的导函数),试确定实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设函数f(x)=x3-3ax2+3(2-a)x,a∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若y=f(x)的图象与x轴相切于原点,当0<x2<x1,f(x1)=f(x2),求证:x1+x2<8.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=lnx+ax+$\frac{1+a}{x}$(a>-$\frac{1}{2}$),(其中e=2.718…).
(1)讨论f(x)的单调性及极值点个数;
(2)若f(x)在[1,e}]的最小值为f(1),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图所示,四棱锥P-ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=AB=$\frac{1}{2}$CD=1,M为PB的中点.
(1)试在CD上确定一点N,使得MN∥平面PAD;
(2)点N在满足(1)的条件下,求直线MN与平面PAB所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在数列{an}中,已知a1=1,当n为奇数时,an+1=an+$\frac{n+1}{4}$;当n为偶数时,an+1=2an-1.
(1)求a2,a3,a4,a5的值;
(2)求数列{an}的前2n项的和S2n
(3)求证:$\frac{1}{2}$<$\frac{{a}_{n}}{{a}_{n+1}}$<1(n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知曲线f(x)=ax+blnx-1在点(1,f(1))处的切线为直线y=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)设函数g(x)=$\frac{{x}^{2}}{2}$-mx+mf(x),其中m为常数,求g(x)的单调区间.

查看答案和解析>>

同步练习册答案