相关习题
 0  245188  245196  245202  245206  245212  245214  245218  245224  245226  245232  245238  245242  245244  245248  245254  245256  245262  245266  245268  245272  245274  245278  245280  245282  245283  245284  245286  245287  245288  245290  245292  245296  245298  245302  245304  245308  245314  245316  245322  245326  245328  245332  245338  245344  245346  245352  245356  245358  245364  245368  245374  245382  266669 

科目: 来源: 题型:解答题

11.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2为左右焦点,B为短轴端点,且S${\;}_{△B{F}_{1}{F}_{2}}$=4,离心率为$\frac{\sqrt{2}}{2}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M、N,且满足|$\overrightarrow{OM}$+$\overrightarrow{ON}$|=|$\overrightarrow{OM}$-$\overrightarrow{ON}$|?若存在,求出该圆的方程,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知偶函数y=f(x)对于任意的x∈[0,$\frac{π}{2}$)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式中成立的有(2)(3)(4).
(1)$\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$)              
(2)$\sqrt{2}$f(-$\frac{π}{3}$)>f(-$\frac{π}{4}$)
(3)f(0)<$\sqrt{2}$f(-$\frac{π}{4}$)                
(4)f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知实数m是2和8的等比中项,则抛物线y=mx2的焦点坐标为(0,±$\frac{1}{16}$).

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是(  )
A.|BM|是定值B.点M在某个球面上运动
C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE

查看答案和解析>>

科目: 来源: 题型:选择题

7.若实数x、y满足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{y≥-x+b}\end{array}\right.$且z=2x+y的最小值为4,则实数b的值为(  )
A.1B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目: 来源: 题型:选择题

6.有四个关于三角函数的命题:
p1:sinx=siny⇒x+y=π或x=y;
p2:?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=1;
p3:x,y∈R,cos(x-y)=cosx-cosy;
p4:?x∈[0,$\frac{π}{2}$],$\sqrt{\frac{1+cos2x}{2}}$=cosx.
其中真命题是(  )
A.p1,p2B.p2,p3C.p1,p4D.p2,p4

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=(  )
A.-1B.0C.2D.4

查看答案和解析>>

科目: 来源: 题型:选择题

4.某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有(  )
A.3种B.6种C.9种D.18种

查看答案和解析>>

科目: 来源: 题型:填空题

3.设集合A={-1,0,$\frac{1}{2}$,3},B={x|x2≥1},则A∩B={-1,3}.

查看答案和解析>>

科目: 来源: 题型:填空题

2.命题“?x∈R,2x>0”的否定是“?x∈R,2x≤0”.

查看答案和解析>>

同步练习册答案